A Novel Median Filter to Iteratively Remove Salt-and-Pepper Noise from Highly Corrupted Images
-
摘要: 针对现有滤波方法处理高密度椒盐噪声的不足,提出一种简单有效的迭代中值滤波算法。该方法首先依据像素的强度值判断噪声点的位置,然后在循环迭代的处理框架内,对噪声像元进行逐步恢复。若噪声影像中包含足够的健康信息,则利用局部灰度差异控制项,完成对滤波结果的进一步优化。基于标准测试影像的实验表明,该方法能更为精确地恢复出被椒盐噪声污染的影像细节信息,其处理结果在目视及定量评价上均优于4种对比的滤波方法;且该方法的处理优势在影像椒盐噪声比例高达95%的情况下也依旧显著。Abstract: In this paper, we propose a simple but efficient filter to effectively remove salt-and-pepper noise from highly corrupted images inspired by the corresponding limitations of existing filtering methods. After ensuring the location of ill pixels based on their intensity value, our method then utilizes the iterative processing framework to gradually restore the noisy images. When the useful information of one corrupted image is much enough, the proposed method can refine the results through particular designed criterion. The experiments from standard test images show that the proposed method can better recover the detail information and maintain the optimal performances qualitatively and quantitatively in the comparisons. Even the ratio of salt-and-pepper noise is as high as 95%, the advantage of our filter is still significant.
-
Keywords:
- salt-and-pepper noise /
- median filter /
- iteration /
- noise removal /
- high density
-
-
表 1 影像在不同噪声密度下的PSNR定量评价结果
Table 1 The Quantitative Evaluation Results Using PSNR Index Under Different Noise Condition
影像 方法 10% 40% 60% 70% 80% 90% 95% AMF 34.44 26.14 22.94 21.49 19.92 17.83 16.57 DBA 34.55 26.60 22.68 20.92 18.96 16.32 15.21 Aerial SAMF 34.56 27.01 24.49 23.14 21.74 19.88 18.58 TIMF 36.35 28.02 24.03 22.20 20.10 17.82 16.58 DPIMF 36.53 29.21 26.06 24.59 22.91 20.55 18.80 AMF 37.46 28.83 25.39 24.11 22.57 20.26 18.81 DBA 37.26 29.32 25.27 23.30 21.42 18.39 16.45 Boat SAMF 37.48 29.95 27.25 25.89 24.51 22.64 21.31 TIMF 38.95 30.97 27.04 25.05 22.54 19.16 16.49 DPIMF 38.97 31.75 28.60 26.97 25.42 23.28 21.52 AMF 40.41 31.56 28.10 26.47 24.43 21.57 19.45 DBA 41.12 32.19 27.92 25.07 22.57 18.21 15.84 Peppers SAMF 42.12 33.87 31.00 29.56 27.63 24.97 22.97 TIMF 42.78 34.17 29.91 26.93 23.58 18.50 15.14 DPIMF 42.94 35.46 32.26 30.07 28.32 25.69 23.60 AMF 44.48 35.65 32.18 30.17 28.58 25.86 23.30 DBA 44.72 36.08 31.27 28.91 26.10 22.21 19.24 Zelda SAMF 44.77 36.94 34.32 32.78 31.12 28.95 26.97 TIMF 46.07 37.77 33.59 31.06 27.57 22.52 18.37 DPIMF 46.05 38.66 35.26 33.93 32.15 29.76 27.66 表 2 影像在不同噪声下密度的MAE定量评价结果
Table 2 The Quantitative Evaluation Results Using MAE Index Under Different Noise Condition
影像 方法 10% 40% 60% 70% 80% 90% 95% AMF 0.86 4.47 7.98 10.26 13.34 18.46 22.73 DBA 0.86 4.23 8.16 10.92 15.04 22.69 28.22 Aerial SAMF 0.84 4.13 6.80 8.65 11.02 14.63 17.77 TIMF 0.69 3.63 7.07 9.57 13.45 20.09 25.24 DPIMF 0.68 3.16 5.62 7.17 9.32 13.07 16.85 AMF 0.65 3.35 5.93 7.50 9.60 13.25 16.55 DBA 0.69 3.18 5.97 8.07 10.89 16.76 22.98 Boat SAMF 0.64 2.98 4.89 6.16 7.77 10.22 12.36 TIMF 0.56 2.74 5.12 6.97 10.02 16.78 25.96 DPIMF 0.56 2.53 4.28 5.56 6.99 9.42 11.86 AMF 0.46 2.32 4.08 5.25 6.98 10.17 13.59 DBA 0.44 2.16 4.03 5.75 8.30 15.18 22.66 Peppers SAMF 0.39 1.85 3.05 3.81 4.96 6.93 9.12 TIMF 0.38 1.83 3.38 4.91 7.73 16.29 29.18 DPIMF 0.38 1.68 2.82 3.77 4.80 6.61 8.51 AMF 0.33 1.70 3.03 3.94 5.18 7.47 10.18 DBA 0.33 1.60 3.10 4.28 6.30 10.84 16.95 Zelda SAMF 0.30 1.43 2.36 3.00 3.84 5.27 6.87 TIMF 0.28 1.35 2.55 3.62 5.78 11.99 22.21 DPIMF 0.28 1.27 2.22 2.78 3.55 4.87 6.28 表 3 Zelda影像不同噪声密度下不同方法的计算时间比较/s
Table 3 Running Time of the Different Methods Under Different Noise Condition in Zelda/s
方法 10% 40% 70% 95% AMF 1.23 4.16 10.37 46.61 DBA 2.58 2.49 2.57 2.63 SAMF 0.64 2.06 2.85 6.48 TIMF 0.31 1.01 1.71 2.32 DPIMF 1.58 6.16 1.73 3.82 -
[1] Bovik A. Handbook of Image and Processing[M]. New York:Academic Press, 2000
[2] Rosenfeld A, Woods R E. Digital Picture Processing[M]. New York:Academic Press, 1982
[3] Nodes T, Gallagher N C. The Output Distribution of Median Type Filters[J]. IEEE Transactions on Communications, 1984, 32(5):532-541 doi: 10.1109/TCOM.1984.1096099
[4] Brownrigg D. The Weighted Median Filter[J]. Communications of the ACM, 1984, 27(8):807-818 doi: 10.1145/358198.358222
[5] Ko S J, Lee Y H. Center Weighted Median Filters and Their Applications to Image Enhancement[J]. IEEE Transactions on Circuits & Systems, 1991, 38(9):984-993 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=83870&contentType=Journals+%26+Magazines&punumber%3D31
[6] Abreu E, Lightstone M, Mitra S K, et al. A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Image Processing, 1996, 5(6):1012-1025 doi: 10.1109/83.503916
[7] Sun T, Neuvo Y. Detail-Preserving Median Based Filters in Image Processing[J]. Pattern Recognition Letters, 1994, 15(4):341-347 doi: 10.1016/0167-8655(94)90082-5
[8] 李树涛, 王耀南.图象椒盐噪声的非线性自适应滤除[J].中国图象图形学报, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004 Li Shutao, Wang Yaonan. Non-Linear Adaptive Removal of Salt and Pepper Noise from Images[J]. Journal of Image and Graphics, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004
[9] 邢藏菊, 王守觉, 邓浩江, 等.一种基于极值中值的新型滤波算法[J].中国图象图形学报, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html Xing Cangju, Wang Shoujue, Deng Haojiang, et al. A New Filtering Algorithm Based on Extremum and Median Value[J]. Journal of Image and Graphics, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html
[10] Zhang S, Karim M A. A New Impulse Noise Detector for Switching Median Filters[J]. IEEE Signal Processing Letters, 2002, 9(11):360-363 doi: 10.1109/LSP.2002.805310
[11] Chan R H, Ho C W, Nikolova M. Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail Preserving Regularization[J]. IEEE Transactions on Signal Processing, 2005, 14(10):1479-1485 http://ci.nii.ac.jp/naid/80017549968
[12] Srinivasan K S, Ebenezer D. A New Fast and Efficient Decision-Based on Algorithm for Removal of High-Density Impulse Noise[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192 doi: 10.1109/LSP.2006.884018
[13] Ibrahim H, Kong N S P, Ng T F. Simple Adaptive Median Filter for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4):1920-1927 doi: 10.1109/TCE.2008.4711254
[14] Wang Z, Zhang D. Progressive Switching Median Filter for the Removal Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Circuits and Systems Ⅱ Analog & Digital Signal Processing, 1999, 46(1):78-80 http://citeseerx.ist.psu.edu/showciting?cid=260222
[15] Ahmed F, Das S. Removal of High-Density Salt-and-Pepper Noise in Images with an Iterative Adaptive Fuzzy Filter Using Alpha-Trimmed Mean[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5):1352-1358 doi: 10.1109/TFUZZ.2013.2286634
[16] Bhadouria V S, Ghoshal D, Siddiqi A H. A New Approach for High Density Saturated Impulse Noise Removal Using Decision-Based Coupled Window Median Filter[J]. Signal Image and Video Processing, 2014, 8(1):71-84 doi: 10.1007/s11760-013-0487-5
-
期刊类型引用(4)
1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术
其他类型引用(3)