城市地表温度影像时空融合方法研究

Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping

  • 摘要: 地表温度(land surface temperature,LST)是反映地表能量和水平衡物理过程的一个重要参数,受限于载荷量的限制以及传感器的技术瓶颈,当前的卫星平台均难以获取同时具有较高空间和时间分辨率的遥感地表温度影像,客观上影响了遥感地表温度影像的应用。针对地表异质性较高的城市区域,选取覆盖武汉城区的中分辨率成像光谱仪(Moderate-Resolution Imaging Spectroradiometer,MODIS)和增强型专题绘图仪(Enhanced Thematic Mapper Plus,ETM+)数据,结合时空反射率融合模型(enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)和非线性辐射温度分解算法(non-linear disaggregation procedure for radiometric surface temperature,NL-DisTrad)对地表温度影像进行时空融合研究,最终生成60 m空间分辨率的逐日地表温度融合影像。将融合影像与2002-07-09和2002-10-13的ETM+实际地表温度影像进行融合精度验证分析,其决定系数R2分别为0.80和0.86,均方根误差(root mean square error,RMSE)分别为2.65 K和1.78 K。实验结果表明,所提出的地表温度时空融合模型在城市区域的地表温度时空融合应用中具有潜在的应用前景。

     

    Abstract: Land surface temperature (LST) is one of the most important parameters in the physical processes of surface energy and water balance. Due to the payload limit and the technical bottleneck of the sensor, it is difficult to obtain land surface temperature products with both high spatial and high temporal resolutions, which restricts applications of land surface temperature products. Based on MODIS and ETM+ images, this paper combines the enhanced spatial and temporal adaptive reflectance fusion model(ESTARFM) with the non-linear disaggregation procedure for radiometric surface temperature (NL-DisTrad) to generate daily land surface temperature products of urban area at a resolution of 60m. We use the actual land surface temperature products in July 9 and October 13 of 2002 over Wuhan urban areas to verify the quality of fusion products. It is shown their R2 are as high as 0.80 and 0.86, respectively, and the RMSE are 2.65 K and 1.78 K, respectively. The results show that the proposed algorithm has fine prospects in the spatial and temporal land surface temperature fusion applications in urban areas.

     

/

返回文章
返回