一种基于统计学习理论的最小生成树图像分割准则

王平, 魏征, 崔卫红, 林志勇

王平, 魏征, 崔卫红, 林志勇. 一种基于统计学习理论的最小生成树图像分割准则[J]. 武汉大学学报 ( 信息科学版), 2017, 42(7): 877-883. DOI: 10.13203/j.whugis20150345
引用本文: 王平, 魏征, 崔卫红, 林志勇. 一种基于统计学习理论的最小生成树图像分割准则[J]. 武汉大学学报 ( 信息科学版), 2017, 42(7): 877-883. DOI: 10.13203/j.whugis20150345
WANG Ping, WEI Zheng, CUI Weihong, LIN Zhiyong. A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 877-883. DOI: 10.13203/j.whugis20150345
Citation: WANG Ping, WEI Zheng, CUI Weihong, LIN Zhiyong. A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 877-883. DOI: 10.13203/j.whugis20150345

一种基于统计学习理论的最小生成树图像分割准则

基金项目: 

海洋公益性行业科研专项 201305020-7

深圳大学空间信息智能感知与服务深圳市重点实验室开放研究基金 201302

国家海洋局南海分局海洋科学技术局长基金 

国家自然科学基金 41101410

湖北省自然科学基金 2011CDB273

详细信息
    作者简介:

    王平, 硕士, 高级工程师, 现主要从事海洋遥感与GIS应用、海洋资源开发与保护等研究。1903125@qq.com

    通讯作者:

    魏征, 博士, 工程师。weizheng0628@foxmail.com

  • 中图分类号: TP751

A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree

Funds: 

The Public Science and Technology Research Funds Projects of Ocean 201305020-7

the Open Research Fund Program of Shenzhen Key Laboratory of Spatial Smart Sensing and Services(Shenzhen University) 201302

the Director Fundation of South China Sea Branch of the State Oceanic Administration 

the National Natural Science Foundation of China 41101410

the Natural Science Foundation of Hubei Province 2011CDB273

More Information
    Author Bio:

    WANG Ping, senior engineer, specializes in marine remote sensing and GIS applications, marine resources development and protection. E-mail:1903125@qq.com

    Corresponding author:

    WEI Zheng, PhD, engineer. E-mail: weizheng0628@foxmail.com

  • 摘要: 根据基于区域增长的面向对象图像分割的本质特点,将统计学习理论与最小生成树算法相结合,提出了一种基于统计学习理论的最小生成树图像分割准则。将该图像分割准则应用于多种遥感影像数据进行分割实验,其结果表明基于统计学习理论的最小生成树图像分割准则能通过简便的参数设置,即可以较好地实现不同尺度目标的图像分割,同时又能对纹理区域进行有效分割,能获得良好的区域边界和较好的抗噪声性能,并在海岸带大比例尺无人机正射影像的图像分割实践中得到了较好验证。
    Abstract: According to the essential feature of object-oriented image segmentation method, this paper explores a minimum span tree (MST) based image segmentation method. We define an edge weight based optimal criterion (merging predicate) which based on statistical learning theory (SLT), a scale control parameter is used to control the segmentation scale. Experiments based on the high resolution UAV images show that the proposed merging predicate can keep the integrity of the objects and do well on preventing over segmentation. It also proves its efficiency in segmenting the rich texture images while can get good boundary of the object.
  • 图  1   基于图模型最小生成树的影像分割

    Figure  1.   Image Segmentation Based on Minimum Spanning Tree of Graph Model

    图  2   M取不同值时阈值随面积的变化规律

    Figure  2.   Relationship Between the Threshold and the Area with Different M

    图  3   采用准则1分割所得结果

    Figure  3.   Segmentation Results by the First Criterion

    图  4   采用准则2分割所得结果

    Figure  4.   Segmentation Results by the Second Criterion

    图  5   本文准则与Felzenszwalb准则分割结果比较

    Figure  5.   Segmentation Result Comparison Between the Proposed Second Criterion and the Criterion Proposed by Felzenszwalb

  • [1]

    Bousquet O, Elisseeff A. Algorithmic Stability and Generalization Performance[J]. Advances in Neural Information Processing Systems, 2001, 13:499-526 http://dl.acm.org/citation.cfm?id=3008778

    [2]

    Bousquet O, Elisseeff A. Stability and Generalization[J]. Journal of Machine Learning Research, 2002, 2:499-526 https://www.researchgate.net/publication/2362401_Stability_and_Generalization

    [3]

    Boykov Y Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]. International Conference on Computer Vision, Vancouver, Canada, 2001

    [4]

    Boykov Y, Kolmogorov V. An Experimental Comparison of Min-cut/max-flow Algorithms for Energy Minimization in Vision[J]. IEEE Transactions on PAMI, 2004, 26(9):1124-1137 doi: 10.1109/TPAMI.2004.60

    [5]

    Cour T, Benezit F, Shi J. Spectral Segmentation with Multiscale Graph Decomposition[J]. IEEE Computer Vision and Pattern Recognition, 2005, 2:1124-1131 https://www.researchgate.net/publication/221364208_Spectral_Segmentation_with_Multiscale_Graph_Decomposition

    [6]

    Falcão A X, Udupa J K, Samarasekera S, et al. User-Steered Image Segmentation Paradigms:Live Wire and Live Lane[J]. Graphical Models and Image Processing, 1998, 60(4):233-260 doi: 10.1006/gmip.1998.0475

    [7]

    Felzenszwalb P F, Huttenlocher D P. Efficient Graph-Based Image Segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181 doi: 10.1023/B:VISI.0000022288.19776.77

    [8]

    Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(3):469-475 doi: 10.1109/TPAMI.2006.57

    [9]

    Hickson S, Birchfield S, Essa I, et al. Efficient Hierarchical Graph-based Segmentation of RGBD Videos[J].Computer Vision and Pattern Recognition (CVPR), 2014, 12(4):344-351 https://smartech.gatech.edu/handle/1853/53657?show=full

    [10]

    Kropatsch W G, Haxhimusa Y, Ion A. Multiresolution Image Segmentations in Graph Pyramids[J]. Studies in Computational Intelligence(SCI), 2007, 52:3-41 https://www.researchgate.net/publication/228387351_Multiresolution_Image_Segmentations_in_Graph_Pyramids

    [11]

    Habib M, McDiarmid C, Ramirez-Alfonsin J, et al. Concentration in Probabilistic Methods for Algorithmic Discrete Mathematics[M].NY:Spring, 1998:195-248

    [12]

    Mortensen E N, Barrett W A. Interactive Segmentation with Intelligent Scissors[J]. Graphical Models and Image Processing, 1998, 60(5):349-384 doi: 10.1006/gmip.1998.0480

    [13]

    Santle C K, Govindan V K. A Review on Graph Based Segmentation[J]. International Journal of Image, Graphics and Signal Processing (IJIGSP), 2012, 4(5):1-13 doi: 10.5815/ijigsp

    [14]

    Shi J, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2000, 22(8):888-905 doi: 10.1109/34.868688

    [15]

    Wei Y C, Cheng C K. Ratio Cut Partitioning for Hierarchical Designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1991, 10(7):911-921 doi: 10.1109/43.87601

    [16]

    Xu N, Bansal R, Ahuja N. Object Segmentation Using Graph Cuts Based Active Contours[J]. IEEE Computer Vision and Pattern Recognition, 2003, 2:46-53 https://www.researchgate.net/publication/4022961_Object_segmentation_using_graph_cuts_based_active_contours

    [17]

    Xu Y, Uberbacher E C. 2D Image Segmentation Using Minimum Spanning Trees[J]. Image and Vision Computing, 1997, 15(1):47-57 doi: 10.1016/S0262-8856(96)01105-5

    [18] 郑晨, 王雷光, 胡亦钧, 等.利用小波域多尺度模糊MRF模型进行纹理分割[J].武汉大学学报·信息科学版, 2010, 35(9):1074-1078 http://ch.whu.edu.cn/CN/abstract/abstract1066.shtml

    Zheng Chen, Wang Leiguang, Hu Yijun, et al. Texture Segmentation Based on Multiscale Fuzzy Markov Random Field Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1074-1078 http://ch.whu.edu.cn/CN/abstract/abstract1066.shtml

图(5)
计量
  • 文章访问数:  1394
  • HTML全文浏览量:  181
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-11
  • 发布日期:  2017-07-04

目录

    /

    返回文章
    返回