A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree
-
摘要: 根据基于区域增长的面向对象图像分割的本质特点,将统计学习理论与最小生成树算法相结合,提出了一种基于统计学习理论的最小生成树图像分割准则。将该图像分割准则应用于多种遥感影像数据进行分割实验,其结果表明基于统计学习理论的最小生成树图像分割准则能通过简便的参数设置,即可以较好地实现不同尺度目标的图像分割,同时又能对纹理区域进行有效分割,能获得良好的区域边界和较好的抗噪声性能,并在海岸带大比例尺无人机正射影像的图像分割实践中得到了较好验证。Abstract: According to the essential feature of object-oriented image segmentation method, this paper explores a minimum span tree (MST) based image segmentation method. We define an edge weight based optimal criterion (merging predicate) which based on statistical learning theory (SLT), a scale control parameter is used to control the segmentation scale. Experiments based on the high resolution UAV images show that the proposed merging predicate can keep the integrity of the objects and do well on preventing over segmentation. It also proves its efficiency in segmenting the rich texture images while can get good boundary of the object.
-
-
[1] Bousquet O, Elisseeff A. Algorithmic Stability and Generalization Performance[J]. Advances in Neural Information Processing Systems, 2001, 13:499-526 http://dl.acm.org/citation.cfm?id=3008778
[2] Bousquet O, Elisseeff A. Stability and Generalization[J]. Journal of Machine Learning Research, 2002, 2:499-526 https://www.researchgate.net/publication/2362401_Stability_and_Generalization
[3] Boykov Y Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]. International Conference on Computer Vision, Vancouver, Canada, 2001
[4] Boykov Y, Kolmogorov V. An Experimental Comparison of Min-cut/max-flow Algorithms for Energy Minimization in Vision[J]. IEEE Transactions on PAMI, 2004, 26(9):1124-1137 doi: 10.1109/TPAMI.2004.60
[5] Cour T, Benezit F, Shi J. Spectral Segmentation with Multiscale Graph Decomposition[J]. IEEE Computer Vision and Pattern Recognition, 2005, 2:1124-1131 https://www.researchgate.net/publication/221364208_Spectral_Segmentation_with_Multiscale_Graph_Decomposition
[6] Falcão A X, Udupa J K, Samarasekera S, et al. User-Steered Image Segmentation Paradigms:Live Wire and Live Lane[J]. Graphical Models and Image Processing, 1998, 60(4):233-260 doi: 10.1006/gmip.1998.0475
[7] Felzenszwalb P F, Huttenlocher D P. Efficient Graph-Based Image Segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181 doi: 10.1023/B:VISI.0000022288.19776.77
[8] Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(3):469-475 doi: 10.1109/TPAMI.2006.57
[9] Hickson S, Birchfield S, Essa I, et al. Efficient Hierarchical Graph-based Segmentation of RGBD Videos[J].Computer Vision and Pattern Recognition (CVPR), 2014, 12(4):344-351 https://smartech.gatech.edu/handle/1853/53657?show=full
[10] Kropatsch W G, Haxhimusa Y, Ion A. Multiresolution Image Segmentations in Graph Pyramids[J]. Studies in Computational Intelligence(SCI), 2007, 52:3-41 https://www.researchgate.net/publication/228387351_Multiresolution_Image_Segmentations_in_Graph_Pyramids
[11] Habib M, McDiarmid C, Ramirez-Alfonsin J, et al. Concentration in Probabilistic Methods for Algorithmic Discrete Mathematics[M].NY:Spring, 1998:195-248
[12] Mortensen E N, Barrett W A. Interactive Segmentation with Intelligent Scissors[J]. Graphical Models and Image Processing, 1998, 60(5):349-384 doi: 10.1006/gmip.1998.0480
[13] Santle C K, Govindan V K. A Review on Graph Based Segmentation[J]. International Journal of Image, Graphics and Signal Processing (IJIGSP), 2012, 4(5):1-13 doi: 10.5815/ijigsp
[14] Shi J, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2000, 22(8):888-905 doi: 10.1109/34.868688
[15] Wei Y C, Cheng C K. Ratio Cut Partitioning for Hierarchical Designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1991, 10(7):911-921 doi: 10.1109/43.87601
[16] Xu N, Bansal R, Ahuja N. Object Segmentation Using Graph Cuts Based Active Contours[J]. IEEE Computer Vision and Pattern Recognition, 2003, 2:46-53 https://www.researchgate.net/publication/4022961_Object_segmentation_using_graph_cuts_based_active_contours
[17] Xu Y, Uberbacher E C. 2D Image Segmentation Using Minimum Spanning Trees[J]. Image and Vision Computing, 1997, 15(1):47-57 doi: 10.1016/S0262-8856(96)01105-5
[18] 郑晨, 王雷光, 胡亦钧, 等.利用小波域多尺度模糊MRF模型进行纹理分割[J].武汉大学学报·信息科学版, 2010, 35(9):1074-1078 http://ch.whu.edu.cn/CN/abstract/abstract1066.shtml Zheng Chen, Wang Leiguang, Hu Yijun, et al. Texture Segmentation Based on Multiscale Fuzzy Markov Random Field Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1074-1078 http://ch.whu.edu.cn/CN/abstract/abstract1066.shtml