-
摘要: X波段测波雷达海流信息的提取决定着有效浪高结果的准确度。因此,对可能影响X波段测波雷达海流信息提取的各种环境因素以及雷达工作模式等进行了海浪回波成像仿真,然后采用目前测波雷达通用的算法对仿真回波图像进行了海流信息反演。主要研究了海表面风速、雷达天线架设距离海平面高度、天线转速、海流流速、海流流向与海浪方向夹角、所选取的图像帧数以及每帧图像大小对海流信息反演的影响。对比分析设定值与反演结果,可知海表面风速在6~14 m/s之间,天线高度大于20 m并且转速为50~70 r/min,流速小于200 cm/s并且主波浪向与流向夹角不接近90°,图像帧数为128帧并且每帧图像数据点数为128×128时,X波段测波雷达能获得最佳海流信息反演结果。Abstract: Sea surface dynamic parameters such as significant wave height and current velocities are obviously important for climate studies as well as the safe and efficient operation and routing of marine traffic. The key point determining the accuracy of the significant wave height extracted by the X-band wave monitoring radar is the accurate estimation of SNR which depends on whether the dispersion shell is correctly obtained. To obtain the dispersion shell, the accurate current velocity should be estimated first. This is done by fitting the theoretical dispersion relation to the signal coordinates in the complex wave number frequency spectrum. Without accurate measurement result of current, there will be serious bias in SWH inversion due to the erroneous calculation of SNR. This paper carried out simulation of ocean surface with different working state of radar and various environment factors which may influence the performance of X-band wave monitoring radar in extracting ocean current, and then inversed the ocean current from the simulated echo images with a general algorithm for wave monitoring radar. The study mainly focused on the factors which may influence ocean current inversion like wind speed, the height and the rotation speed of antenna, the velocity and the angles between current and main wave direction, images quantity and its size. Comparing preset values and inversion results, it shows that when the wind speed ranges from 6 to 14 meters per second, the antennars 20 meters higher than sea level and its rotation speed is limited from 50 to 70 r/min, the velocity of ocean current is less than 200 centimeters per second and the angles between current and main wave directions are not close to 90 degrees. When the quantity of images is 128 and an image size of 128×128, X-band wave monitoring radar could achieve the best ocean current inversion results.
-
目前,北斗导航卫星系统(BDS)已实现局域覆盖,随着系统建设的不断完善和应用的不断拓展,与之相关的各类数据处理软件的开发成为重要的研究内容。因此,自主开发北斗高精度数据处理软件,成为发展高精度位置服务的迫切任务[1-8]。因北斗导航卫星系统与GPS在星座构造、坐标框架、时间系统、信号频率等方面具有明显差异[9-15],现有的高精度GPS数据处理软件无法直接处理北斗数据。本文针对北斗高精度数据处理的系统设计、数据流、功能模块及高精度算法实现等进行了研究,研制开发了一套高精度北斗基线解算软件BGO(BeiDou Navigation Satellite System/Global Positioning System Office),并将其用于高速铁路高精度控制测量建网。通过与商业软件TGO(Trimble Geomatics Office)和TBC(Trimble Business Center),及高精度科研软件Bernese进行对比测试、性能分析,验证了该软件的正确性和有效性。
1 系统的设计与模块算法的实现
1.1 系统设计与数据流分析
北斗和GPS基线解算软件主要包含北斗基线处理、GPS基线处理及联合基线处理3大模块。各模块间相互独立,但使用相同的数据结构,且数据流基本一致。数据处理流程如图 1所示。
基线解算之前,需选择有效双频观测数据,具体包含低高度角卫星剔除、观测值粗差剔除、星历未获取观测数据剔除等。剔除质量较差的观测数据可通过可视化的方式实现。通过双频数据组合有效消除电离层延迟影响,伪距消电离组合能算出测站精确至10 m内的概略位置,从而形成网络拓扑图,便于用户查看站点的平面分布。基线解算时,北斗与GPS独立系统数据处理算法相同;联合处理需选择统一的坐标和时间框架,随着多余观测数的增加,还需设置合理的模糊度固定限值。基线解算后,进行网平差,应剔除不合格基线,直至平差结果满足要求。
1.2 高精度基线解算算法实现
高精度基线解算利用双差观测量建立误差方程,北斗双差观测量构造如式(1):
$$ \mathit{\Delta} \nabla L^{{C_m}{C_n}}_{{S_i}{S_j}} = \left( {L^{{C_n}}_{{S_j}} - L^{{C_n}}_{{S_i}}} \right) - \left( {L^{{C_m}}_{{S_j}} - L^{{C_m}}_{{S_i}}} \right) $$ (1) 式中,Δ▽L表示双差观测量;Si和Sj表示任意站点;Cm和Cn表示任意北斗卫星。
依据式(1)构建的双差观测量,建立误差方程,如式(2):
$$ \left[ \begin{array}{l} \mathit{\Delta} \nabla \boldsymbol{\varPhi} \\ \mathit{\Delta} \nabla \boldsymbol{P} \end{array} \right] = \boldsymbol{BX} + \boldsymbol{A}\mathit{\Delta} \nabla \boldsymbol{N} + \boldsymbol{V} $$ (2) 式中,Δ▽Φ和Δ▽P分别表示卫星载波相位和伪距双差观测量;X表示基线向量;Δ▽N表示双差整周模糊度;B和A为系数阵;V为残差向量。
利用式(2)构建的误差方程,解算基线向量和双差整周模糊度浮点解。利用LAMBAD方法[16, 17]固定双差整周模糊度后去除。再利用载波相位观测值获取高精度基线向量结果。基线解算过程中,主要利用抗差估计的切比雪夫多项式拟合法[18]及MW-GF组合法[19]探测与修复周跳。
对北斗和GPS双系统基线解算,只需将各系统的双差观测量误差方程叠加后平差计算,即可实现双系统联合基线解算。但需注意,星间差分需选择同一系统卫星,否则会引入系统间信号硬件延迟[20],影响双差整周模糊度的固定。另外,北斗和GPS在时间框架、坐标框架等存在一定差异,双系统联合解算需保证框架的统一。
北斗和GPS时间转换公式如式(3):
$$ {t_C} = {t_G}-14\;{\rm{s}} $$ (3) 式中,tC和tG分别表示北斗时和GPS时,两者均为原子时,起算原点不同[13]。
北斗和GPS坐标转换公式如式(4):
$$ \begin{array}{c} \left[ {\begin{array}{*{20}{c}} {{X_C}}\\ {{Y_C}}\\ {{Z_C}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{T_X}}\\ {{T_Y}}\\ {{T_Z}} \end{array}} \right] + \\ \left[ {\begin{array}{*{20}{c}} D&{ - {R_Z}}&{{R_Y}}\\ {{R_Z}}&D&{ - {R_X}}\\ { - {R_Y}}&{{R_X}}&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] \end{array} $$ (4) 式中,北斗坐标(XC,YC,ZC)与GPS坐标(XG,YG,ZG)可通过七参数TX、TY、TZ、D、RX、RY、RZ进行转换。北斗CGCS2000坐标系采用ITRF97框架2000历元的坐标和速度场,当前GPS WGS84坐标和ITRF08基本一致。因此,可利用ITRF97框架2000历元与ITRF08间转换的七参数(ITRF网站公布)实现北斗与GPS坐标框架的统一[11, 12]。
2 BGO数据处理实例与性能测试
2.1 高速铁路CPI控制网基线解算
处理高速铁路CPI控制网时,通过读取观测文件和星历文件,单点定位生成控制网的基线网络拓扑图,如图 2所示。基线解算前,设置相关参数包括卫星截止高度角、误差限差参数、框架、对流层模型、电离层模型、模糊度Ratio值、同步最小观测历元数等。设置完成后,可选择北斗、GPS、联合3种模式进行基线解算。基线解算完成后,软件界面中将显示解算的基线分量及其精度,并可显示残差向量检核基线解算效果。
2.2 BGO、TGO、Bernese软件处理GPS基线结果比较
为了测试BGO解算GPS基线的正确性,将其与TGO和Bernese软件处理结果进行了比较,得到57条GPS基线(基线最长6 667 m,最短446 m)的比较结果,如图 3所示。
图 3(a)、3(b)分别表示BGO软件与TGO、Bernese软件处理GPS基线分量的差值ΔX、ΔY、ΔZ。图 3(a)中,BGO和TGO有52条基线在X、Y、Z方向的分量差值均在2 cm内,有48条基线各分量差值在mm级。TGO解算少量基线验后方差分量超限,与BGO基线分量差值较大。图 3(b)中,BGO和Bernese有55条基线在X、Y、Z方向的分量差值均在2 cm内,有49条基线各分量差值在mm级。
图 4(a)~4(c)分别表示BGO、TGO、Bernese软件处理GPS基线的内符合精度σX、σY、σZ(BGO、TGO、Bernese软件基线解算精度分别精确至0.1 mm、1 mm和0.1 mm)。整体上,约90%的基线3个软件的解算精度相当。
2.3 BGO、TBC软件处理北斗与GPS联合基线结果
为了测试BGO解算北斗与GPS联合基线的性能,本文选用美国Trimble的商业软件TBC与之进行比较。同上57条基线,每条基线观测数据均包含北斗与GPS观测数据。图 5展示了BGO和TBC处理北斗与GPS联合基线分量的差值ΔX、ΔY、ΔZ。图 5可见,98%的基线分量差值分布在mm级,表明BGO软件处理联合基线能达到与TBC软件相当的水平。另外,两者内符合精度绝大部分均在mm级,故图 5中未加以比较。
由此可知,BGO软件处理GPS基线、北斗与GPS联合基线的内外符合精度能达到TGO、Bernese、TBC相当的水平。因此,以BGO软件处理GPS、北斗与GPS联合基线结果为参考值,分析该软件处理北斗基线结果的正确性和可靠性,如图 6和图 7所示。图 6比较了北斗与GPS、联合基线分量的差值,图 7比较了北斗、GPS、联合基线解算的内符合精度。
图 6(a)表示BGO软件处理北斗与GPS基线分量的差值ΔX、ΔY、ΔZ,其中有43条基线在X、Y、Z方向上的分量差值Δx、Δy、Δz在2 cm内,有31条基线在X、Y、Z方向上的分量差值在mm级。图 6(b)表示BGO软件处理北斗与联合基线分量的差值,其中有54条基线在X、Y、Z方向上的分量差值在2 cm内,有38条基线在X、Y、Z方向上的分量差值在mm级(图 6中第6条基线北斗为浮点解,各分量差值结果较大,图中置为0)。
图 7中,93%的联合基线在X、Y、Z方向上的分量精度分别优于0.5 mm、1 mm、0.5 mm;约90%的北斗基线和95%的GPS基线在X、Y、Z方向上的分量精度分别优于1 mm、2 mm、1 mm。由北斗、GPS、联合基线3者精度比较可知,在北斗试运行阶段,GPS基线内符合精度略优于北斗,北斗与GPS联合系统基线内符合精度明显高于独立系统。
2.4 BGO基线网平差及其精度分析
BGO具备网平差功能,根据网平差后的基线分量改正数、相对中误差、点位精度等判断基线解算结果的可靠性。对上述解算的北斗、GPS、联合基线分别进行无约束网平差。
北斗、GPS、联合基线无约束网平差的平差改正数δX、δY、δZ绝大部分在±1 cm内,如图 8(a)~8(c)所示。最弱边相对中误差优于5.5 ppm(规范限值),具体见表 1。据图 8、表 1及《高速铁路工程测量规范》[21]可知,BGO能合理稳定地解算北斗、GPS及联合基线,解算结果中的基线向量改正数、最弱边相对中误差、最弱点点位精度均满足CPI控制测量要求,各系统解算均能精确获得24个CPI控制点坐标。
表 1 GPS、北斗、联合无约束平差结果统计Table 1. The Statistics of GPS, BDS and BDS/GPS Combined Unconstrained Adjustment Results解算模式 独立基线 多余观测数 控制点个数 最弱边相对中误差/ppm 最弱点点位精度/mm GPS 55 66 24 3.6 23.6 北斗 51 57 24 3.1 26.9 联合 57 72 24 3.7 17.9 3 结语
本文系统地研究了北斗与GPS联合基线解算的算法,自主开发了北斗高精度基线解算软件BGO。通过实测高铁CPI控制网的数据处理测试表明:软件能进行高精度地处理北斗与GPS数据, 以及北斗与GPS联合数据处理;GPS基线解算性能与天宝TGO软件相当,能达到与Bernese软件一致的精度;北斗与GPS基线处理能达到与TBC相当的水平。BGO最大的优势在于能对北斗和GPS进行联合解算,从而提高北斗或GPS单系统的基线解算合格率和精度。经高速铁路CPI控制网实例测试,证明该软件处理基线结果可用于高精度北斗和GPS测量控制网的数据处理。
-
-
[1] Young I R, Rosenthal W, Zimmer F. A Three Dimensional Analysis of Marine Radar Images for Determination of Ocean Wave Directionality and Surface Currents[J]. Journal of Geophysical Research, 1985, 90(C1):1049-1059 doi: 10.1029/JC090iC01p01049
[2] 田建生, 吴世才, 杨子杰.高频地波雷达海洋回波处理中的噪声研究[J].电波科学学报, 2002, 17(4):396-400 http://www.wenkuxiazai.com/doc/6dfcc9346bd97f192379e920.html Tian Jiansheng, Wu Shicai, Yang Zijie. Noise Researched in HFGW Radar Sea Echo Processing[J]. Chinese Journal of Radio Science, 2002, 17(4):396-400 http://www.wenkuxiazai.com/doc/6dfcc9346bd97f192379e920.html
[3] Senet C M, Seemann J, Flampouris S. Determination of Bathymetric and Current MAPS by the Method DISC Based on the Analysis of Nautical X-Band Radar Image Sequences of the Sea Surface[J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(8):2267-2279 doi: 10.1109/TGRS.2008.916474
[4] Gangeskar R. An Algorithm for Estimation of Wave Height from Shadowing in X-Band Radar Sea Surface Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(6):3373-3381 http://ieeexplore.ieee.org/document/6567907/
[5] Chen Z, He Y, Zhang B, et al. A New Algorithm to Retrieve Wave Parameters from Marine X-Band Radar Image Sequences[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(7):4083-4091 http://ieeexplore.ieee.org/document/6600907/
[6] 王立, 吴雄斌, 马克涛, 等.利用X波段导航雷达探测海洋表面流速的方法[J].武汉大学学报·信息科学版, 2015, 40(1):90-95 http://ch.whu.edu.cn/CN/abstract/abstract3163.shtml Wang Li, Wu Xiongbin, Ma Ketao, et al. A Method to Detect Ocean Surface Current Based on X-Band Marine Radar[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):90-95 http://ch.whu.edu.cn/CN/abstract/abstract3163.shtml
[7] Xu M, Chu X L, Wang J, et al. Ocean Wind Speed Retrieved from X-Band Radar Image[C]. International Conference on Automation, Mechanical Control and Computational Engineering, Atlantis Press, Paris, France, 2015 http://ieeexplore.ieee.org/document/1294076/
[8] Shen C, Huang W, Gill E W, et al. An Algorithm for Surface Current Retrieval from X-Band Marine Radar Images[J]. Remote Sensing, 2015, 7(6):7753-7767 doi: 10.3390/rs70607753
[9] Serafino F, Lugni C, Soldovieri F. A Novel Strategy for the Surface Current Determination From Marine X-Band Radar Data[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(2):231-235 https://www.researchgate.net/profile/Francesco_Serafino/publication/224608387_A_Novel_Strategy_for_the_Surface_Current_Determination_From_Marine_X-Band_Radar_Data/links/570f5da408aecd31ec9a9b75.pdf?origin=publication_list
[10] 崔利民. X波段雷达海浪与海流遥感机理及信息提取方法研究[D]. 青岛: 中国科学院海洋研究所, 2008 http://cdmd.cnki.com.cn/Article/CDMD-80068-2010147092.htm Cui Limin. Study on Remote Sensing Mechanism and Retrial Method of Ocean Wave and Current with X-Band Radar[D]. Qingdao:Marine Research Institute of Chinese Academy of Sciences, 2008 http://cdmd.cnki.com.cn/Article/CDMD-80068-2010147092.htm
[11] 王广海. 基于X波段雷达的海流信息反演及海态参数的影响因素分析[D]. 青岛: 中国海洋大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10423-1013367661.htm Wang Guanghai. Inversion of Ocean Current and Analysis of Influencing Factors of Sea States Parameters with X-Band Radar[D]. Qingdao:Ocean University of China, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10423-1013367661.htm
[12] Ramos R J, Lund B, Graber H C. Determination of Internal Wave Properties from X-Band Radar Observations[J]. Ocean Engineering, 2009, 36(14):1039-1047 doi: 10.1016/j.oceaneng.2009.07.004
[13] Longuet-Higgins M S. The Statistical Analysis of a Random Moving Surface[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1957, 249:321-387 http://rsta.royalsocietypublishing.org/content/249/966/321
[14] 文圣常, 宇宙文.海浪理论及计算原理[M].北京:科学出版社, 1984 Wen Shengchang, Yu Zhouwen. Wave Theory and Principle of Calculations[M]. Beijing:Science Press, 1984
[15] Senet C M, Seemann J, Ziemer F. The Near-Surface Current Velocity Determined from Image Sequences of the Sea Surface[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(3):492-505 http://ieeexplore.ieee.org/document/911108/
[16] Plant W J, Keller W C, Hayes K, et al. Normalized Radar Cross Section of the Sea for Backscatter:2. Modulation by Internal Waves[J]. Journal of Geophysical Research, 2010, 115:1783-1794 doi: 10.1029/2009JC006079/full?scrollTo=references
[17] Catalán P A, Haller M C, Plant W J. Microwave Backscattering from Surf Zone Waves[J]. Journal of Geophysical Research Oceans, 2014, 119(5):3098-3120 doi: 10.1002/2014JC009880
-
期刊类型引用(8)
1. 张莹,任战利,兰华平,祁凯,邢光远,夏岩. 关中盆地新近系蓝田-灞河组热储层物性及渗流特征研究. 地质通报. 2024(05): 712-725 . 百度学术
2. 吴陈冰洁,罗璐,高楠安,汪新伟,崔梓贤. 关中盆地西安凹陷新近系砂岩热储特征研究. 现代地质. 2024(06): 1571-1584 . 百度学术
3. 张欢,陈应涛,陶威,陈涛,余文鑫,艾卉卉. 不同拉伸方式和速度下的伸展构造砂箱物理模拟实验研究. 西北地质. 2023(02): 327-336 . 百度学术
4. 颜复康,田镇,杨志强,杨兵,梁沛. 厄瓜多尔俯冲区震间闭锁与粘弹性变形研究. 大地测量与地球动力学. 2023(10): 1080-1085 . 百度学术
5. 张莹,任战利,邢光远,祁凯,夏岩. 渭河盆地新近系热储层特征. 地质通报. 2023(11): 1993-2005 . 百度学术
6. 徐斌,张艳. 地下水化学类型分区的GIS空间分析模型. 武汉大学学报(信息科学版). 2019(06): 866-874 . 百度学术
7. 闫俊义,吕睿,赵涛,王莹,白若冰,古云鹤. 关中盆地地壳应力场特征分析. 山西地震. 2019(03): 39-41 . 百度学术
8. 白相东,关成尧,张艳,袁四化,刘晓燕. 渭河盆地断层系统运动学体制分解与探讨. 防灾科技学院学报. 2018(03): 8-16 . 百度学术
其他类型引用(10)