引黄灌区水稻叶面积指数的高光谱估测模型

秦占飞, 申健, 谢宝妮, 严林, 常庆瑞

秦占飞, 申健, 谢宝妮, 严林, 常庆瑞. 引黄灌区水稻叶面积指数的高光谱估测模型[J]. 武汉大学学报 ( 信息科学版), 2017, 42(8): 1159-1166. DOI: 10.13203/j.whugis20150132
引用本文: 秦占飞, 申健, 谢宝妮, 严林, 常庆瑞. 引黄灌区水稻叶面积指数的高光谱估测模型[J]. 武汉大学学报 ( 信息科学版), 2017, 42(8): 1159-1166. DOI: 10.13203/j.whugis20150132
QIN Zhanfei, SHEN Jian, XIE Baoni, YAN Lin, CHANG Qingrui. Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1159-1166. DOI: 10.13203/j.whugis20150132
Citation: QIN Zhanfei, SHEN Jian, XIE Baoni, YAN Lin, CHANG Qingrui. Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1159-1166. DOI: 10.13203/j.whugis20150132

引黄灌区水稻叶面积指数的高光谱估测模型

基金项目: 

国家863计划 2013AA102401-2

高等学校博士学科点专项科研基金 20120204110013

详细信息
    作者简介:

    秦占飞, 博士, 主要从事遥感与GIS应用研究。zhanfeiqin@163.com

    通讯作者:

    常庆瑞, 教授。changqr@nwsuaf.edu.cn

  • 中图分类号: P237;TP79;S127

Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone

Funds: 

The National High Tech R & D Program(863 Program) of China 2013AA102401-2

Research Fund for the Doctoral Program of Higher Education of China 20120204110013

More Information
  • 摘要: 水稻叶面积指数(leaf area index,LAI)是评价其长势的重要农学参数,高光谱遥感能够实现叶面积指数的快速无损监测。为了寻找反演水稻LAI的最优植被指数,扩展水稻LAI高光谱估测模型的普适性,选取宁夏引黄灌区水稻为研究对象,通过设置不同氮素处理,借助相关分析、回归分析等方法研究高光谱植被指数与水稻LAI之间的定量关系,并通过确立的最优波段组合,构建4种植被指数与水稻LAI的高光谱反演模型。结果表明,水稻LAI在抽穗末期达到最大值,并随氮素水平的增加而增加;水稻冠层原始光谱反射率在400~722 nm和1 990~2 090 nm波段与LAI达到极显著负相关水平,在近红外区域760~1 315 nm与LAI呈极显著正相关。模型检验结果表明,以比值植被指数RVI(850,750)为变量建立的水稻LAI估测模型最佳,研究结果可为水稻LAI的高光谱估测提供地域参考。
    Abstract: Leaf area index (LAI) is one of the important parameters for evaluating rice growth status. Hyperspectral remote sensing is a new technical approach that can be used to acquire LAI information quickly and nondestructively. This study aims to explore the best vegetation index and monitoring model for rice LAI inversion. This study was carried out in Ningxia irrigation zone, where the rice was planted in different fertilizer level. Then the correlation between vegetation index and LAI was analyzed and four inversion models were constructed for estimating LAI by using correlation analysis and regression analysis. The result revealed that the LAI value increased with the increase of nitrogen level, and it reached a maximum value at booting stage and then drops down. The reflectance of rice canopy at the wavebands 400~722 nm and 1 990~2 090 nm was very significantly negatively correlated with LAI and that of which at near infrared region (760~1 315 nm) was very significantly positively correlated with LAI. The tests with independent dataset suggested that the rice LAI monitoring models with radio vegetation index RVI (850, 750) as the variable could give an accurate LAI estimation. These results provided an insight for monitoring the rice LAI in different regions.
  • 图  1   水稻采样点示意图

    Figure  1.   Experimental Layout for Rice

    图  2   不同氮素水平下不同生育期水稻LAI

    Figure  2.   LAI of Rice in Differernt Nitrogen Level and Growth Stages

    图  3   不同氮素水平不同生育期冠层光谱曲线特征

    Figure  3.   Spectral Reflectance of Rice Canopy in Differernt Nitrogen Level and Growth Stages

    图  4   水稻LAI与冠层原始光谱的相关性

    Figure  4.   Correlation Patterns of LAI to Rice Canopy Spectral Reflectance

    图  5   植被指数估算LAI的决定系数R2分布图

    Figure  5.   Distribution Plot of the Coefficient of Determination (R2) Between LAI and Vegetation Index

    图  6   高光谱植被指数拟合的水稻LAI预测模型

    Figure  6.   LAI Estimation Models with Different Hyperspectral Vegetation Indices

    图  7   基于RVI和DVI为参数的水稻LAI预测模型的预测效果

    Figure  7.   Precision Results of the Estimation Models of LAI Based on RVI and DVI

    表  1   估算水稻LAI的高光谱植被指数模型

    Table  1   Hyperspectral Vegetation Index Estimation Model of LAI for Rice

    变量 模型 回归方程 R2 F
    线性 y=22.954x-24.165 0.754 65.28
    指数 y=3×10-5e9.565x 0.864 80.56
    RVI 对数 y=26.514lnx-1.404 0.740 60.35
    二次多项式 y=92.887x2-194.37x +102.35 0.816 73.62
    y=0.355x11.137 0.857 74.54
    线性 y =11.511x-1.312 0.806 45.76
    指数 y=0.415e4.538x 0.827 72.25
    DVI 对数 y=3.295 0lnx+6.640 0.676 20.79
    二次多项式 y=8.176x2 + 5.2x-0.301 0.812 65.25
    y=10.735x1.412 0.820 50.16
    线性 y=7.619x-2.299 0.488 21.36
    指数 y=0.246e3.188x 0.564 45.26
    NDVI 对数 y=4.244lnx+4.766 0.437 15.27
    二次多项式 y=4.221x2+ 8.830x-0.746 0.505 20.16
    y=4.831x1.831 0.537 38.25
    线性 y=8.614x-0.193 8 0.632 37.69
    指数 y=0.619e3.503x 0.684 66.75
    MSAVI2 对数 y=1.524lnx+4.964 0.424 25.46
    二次多项式 y=4.156x2+ 5.511x+0.237 0.616 28.35
    y=5.623x0.715 0.638 55.24
    下载: 导出CSV
  • [1]

    Chen J M, Cihlar J. Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images[J]. Remote Sensing of Environment, 1996, 55(2):153-162 doi: 10.1016/0034-4257(95)00195-6

    [2] 浦瑞良, 宫鹏.高光谱遙感及其应用[M].北京:高等教育出版社, 2000:1-254

    Pu Ruiliang, Gong Peng. Hyperspectral Remote Sensing and Its Applications[M]. Beijing:Higher Education Press, 2000:1-254

    [3] 王春梅, 顾行发, 余涛, 等.农田春小麦叶面积指数和覆盖度时空变异性研究[J].农业机械学报, 2014, 45(8):254-261 doi: 10.6041/j.issn.1000-1298.2014.08.041

    Wang Chunmei, Gu Xingfa, Yu Tao, et al. Spatial and Temporal Variability of Spring Wheat Leaf Area Index and Coverage in Northwest China[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8):254-261 doi: 10.6041/j.issn.1000-1298.2014.08.041

    [4]

    Li Xinchuan, Zhang Youjing, Bao Yansong, et al. Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression[J].Remote Sensing, 2014, 6(7):6221-6241 doi: 10.3390/rs6076221

    [5]

    Wang F M, Huang J F, Zhou Q F, et al. Optimal Waveband Identification for Estimation of Leaf Area Index of Paddy Rice[J]. J. Zhejiang Univ. Sci. B, 2008, 9(12):953-963 doi: 10.1631/jzus.B0820211

    [6] 徐鹏, 顾晓鹤, 孟鲁闽, 等.洪涝胁迫的水稻叶面积指数变化及其光谱响应研究[J].光谱学与光谱分析, 2013, 33(12):3298-3302 doi: 10.3964/j.issn.1000-0593(2013)12-3298-05

    Xu Peng, Gu Xiaohe, Meng Lumin, et al. Change of LAI and Spectral Response for Rice Under Flood and Waterlogging Stress[J].Spectroscopy and Spectral Analysis, 2013, 33(12):3298-3302 doi: 10.3964/j.issn.1000-0593(2013)12-3298-05

    [7] 刘占宇, 黄敬峰, 王福民, 等.估算水稻叶面积指数的调节型归一化植被指数[J].中国农业科学, 2008, 41(10):3350-3356 doi: 10.3864/j.issn.0578-1752.2008.10.057

    Liu Zhanyu, Huang Jingfeng, Wang Fumin, et al. Adjusted-Normalized Difference Vegetation Index for Estimating Leaf Area Index of Rice[J].Scientia Agricultura Sinica, 2008, 41(10):3350-3356 doi: 10.3864/j.issn.0578-1752.2008.10.057

    [8] 杨燕, 田庆久.高光谱反演水稻叶面积指数的主成分分析法[J].国土资源遥感, 2007(3):47-50, 61 doi: 10.6046/gtzyyg.2007.03.11

    Yang Yan, Tian Qingjiu. Principal Component Analysis Method for Retrieving Leaf Area Index of Rice from Hyperspectral Data[J]. Remote Sensing for Land & Resources, 2007(3):47-50, 61 doi: 10.6046/gtzyyg.2007.03.11

    [9] 杨晓华, 黄敬峰, 王秀珍, 等.基于支持向量机的水稻叶面积指数高光谱估算模型研究[J].光谱学与光谱分析, 2008, 28(8):1837-1841 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200808039.htm

    Yang Xiaohua, Huang Jingfeng, Wang Xiuzhen, et al. The Estimation Model of Rice Leaf Area Index Using Hyperspectral Data Based on Support Vector Machine[J]. Spectroscopy and Spectral Analysis, 2008, 28(8):1837-1841 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200808039.htm

    [10]

    Nguy-Robertson A L, Peng Y, Gitelson A A, et al. Estimating Green LAI in Four Crops:Potential of Determining Optimal Spectral Bands for a Universal Algorithm[J]. Agricultural and Forest Meteorology, 2014(192-193):140-148

    [11]

    Haboudane D. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies:Modeling and Validation in the Context of Precision Agriculture[J]. Remote Sensing of Environment, 2004, 90(3):337-352 doi: 10.1016/j.rse.2003.12.013

    [12]

    Ruffin C, King R L, Younan N H. A Combined Derivative Spectroscopy and Savitzky-Golay Filtering Method for the Analysis of Hyperspectral Data[J].GIScience & Remote Sensing, 2008, 45(1):1-15

    [13]

    Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-Grass Prairie, Pawnee National Grassland, Colorado[C]. The 8th International Symposium on Remote Sensing of the Environment Ann Arbor, Michigan, 1972

    [14]

    Jordan C F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor[J]. Ecology, 1969, 50(4):663-666 doi: 10.2307/1936256

    [15]

    Rouse J W, Haas R H, Schell J A. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation[M]. College Station:Texas A and M University Press, 1974

    [16]

    Qi J, Chehbouni A, Huete A R, et al. A Modified Soil Adjusted Vegetation Index[J]. Remote Sensing of Environment, 1994, 48(2):119-126 doi: 10.1016/0034-4257(94)90134-1

    [17] 王秀珍, 黄敬峰, 李云梅, 等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报, 2004, 8(1):81-88 doi: 10.11834/jrs.20040113

    Wang Xiuzhen, Huang Jingfeng, Li Yunmei, et al. The Study on Hyperspectral Remote Sensing Estimation Models About LAI of Rice[J]. Journal of Remote Sensing, 2004, 8(1):81-88 doi: 10.11834/jrs.20040113

    [18]

    Carlson T N, Ripley D A. On the Relation Between NDVI, Fractional Vegetation Cover, and Leaf Area Index[J]. Remote Sensing of Environment, 1997, 62(3):241-252 doi: 10.1016/S0034-4257(97)00104-1

    [19]

    Shibayama M, Akiyama T. Seasonal Visible, Near-Infrared and Mid-Infrared Spectra of Rice Canopies in Relation to LAI and Above-Ground Dry Phytomass[J]. Remote Sensing of Environment, 1989, 27(2):119-127 doi: 10.1016/0034-4257(89)90011-4

    [20] 薛利红, 曹卫星, 罗卫红, 等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报, 2004, 28(1):47-52 doi: 10.17521/cjpe.2004.0007

    Xue Lihong, Cao Weixing, Luo Weihong, et al. Relationship Between Spectral Vegetation Indices and LAI in Rice[J]. Acta Phytoecologica Sinica, 2004, 28(1):47-52 doi: 10.17521/cjpe.2004.0007

  • 期刊类型引用(10)

    1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
    2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
    3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
    4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
    5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
    6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
    7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
    8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
    9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
    10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术

    其他类型引用(17)

图(7)  /  表(1)
计量
  • 文章访问数:  1780
  • HTML全文浏览量:  332
  • PDF下载量:  423
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-01-17
  • 发布日期:  2017-08-04

目录

    /

    返回文章
    返回