可变形部件模型在高分辨率遥感影像建筑物检测中的应用

沈佳洁, 潘励, 胡翔云

沈佳洁, 潘励, 胡翔云. 可变形部件模型在高分辨率遥感影像建筑物检测中的应用[J]. 武汉大学学报 ( 信息科学版), 2017, 42(9): 1285-1291. DOI: 10.13203/j.whugis20150048
引用本文: 沈佳洁, 潘励, 胡翔云. 可变形部件模型在高分辨率遥感影像建筑物检测中的应用[J]. 武汉大学学报 ( 信息科学版), 2017, 42(9): 1285-1291. DOI: 10.13203/j.whugis20150048
SHEN Jiajie, PAN Li, HU Xiangyun. Building Detection from High Resolution Remote Sensing Imagery Based on a Deformable Part Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1285-1291. DOI: 10.13203/j.whugis20150048
Citation: SHEN Jiajie, PAN Li, HU Xiangyun. Building Detection from High Resolution Remote Sensing Imagery Based on a Deformable Part Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1285-1291. DOI: 10.13203/j.whugis20150048

可变形部件模型在高分辨率遥感影像建筑物检测中的应用

基金项目: 

国家重点基础研究发展计划 2012CB719900

详细信息
    作者简介:

    沈佳洁, 博士生, 工程师, 主要从事地形图更新的理论和方法研究。alice606522@163.com

  • 中图分类号: P231

Building Detection from High Resolution Remote Sensing Imagery Based on a Deformable Part Model

Funds: 

The National Basic Research Program of China 2012CB719900

More Information
    Author Bio:

    SHEN Jiajie, PhD candidate, engineer, specializes in map updating. E-mail: alice606522@163.com

  • 摘要: 高分辨率遥感影像具有场景复杂、目标种类多样、同一目标呈现多种形态等特点,给建筑物检测带来困难。近年来,可变形部件模型(deformable part model,DPM)被广泛应用到模式识别领域,并且在自然场景的目标识别方面取得很好的效果。结合可变形部件模型,提出一种针对高分辨率遥感影像中建筑物的检测方法,将建筑物看作可变形部件的组合,通过训练得到其对应的参数模板,并采用滑动窗口的方式遍历待检测的影像,判断其中是否存在建筑物目标。通过对分辨率为0.5 m的高分辨率遥感影像的实验证明了方法的有效性。
    Abstract: The characteristics of high resolution remote sensing imagery-complex scenes, diversity, various forms of one target, and so on-make automatic building detection difficult.. In recent years, the deformable part model (DPM) has become widely used in the field of pattern recognition, and effective for target recognition in natural scenes. In this paper, we propose a new method of building detection using high resolution remote sensing imagery, based on DPM. This method considers a building as a combination of deformable parts, obtains its template parameters by training, and traverses images with a sliding window to detect buildings. Experiments show the validity of the method.
  • 图  1   矩形建筑物的DPM模板

    Figure  1.   DPM Template for Rectangular Building

    图  2   部分正样本(建筑物样本在图中高亮显示)

    Figure  2.   Positive Samples

    图  3   建筑物模板

    Figure  3.   Templates of Building

    图  4   部分检测结果

    Figure  4.   Results of Building Detection

    图  5   检测结果分析

    Figure  5.   Analysis of Detection Results

    表  1   算法结果对比

    Table  1   Comparison of Results Between Our Algorithm and Other Algorithms

    正确漏检误检查全率/%查准率/%
    文献[4]方法52253861.945.2
    文献[9]方法318545085.586.4
    本文方法10723782.393.9
    下载: 导出CSV
  • [1] 侯蕾, 尹东, 尤晓建.一种遥感图像中建筑物的自动提取方法[J].计算机仿真, 2006, 23(4):184-187 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200604050.htm

    Hou Lei, Yin Dong, You Xiaojian. An Automatic Building Detection Method from Remote Sensing Images[J].Computer Simulation, 2006, 23(4):184-187 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200604050.htm

    [2]

    Simonetto E, Oriot H, Garello R.Rectangular Building Extraction from Stereoscopic Airborne Radar Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2386-2395 doi: 10.1109/TGRS.2005.853570

    [3]

    Park D C, Woo D M, Kim C S. Clustering of 3D Line Segments Using Centroid Neural Network for Building Detection[J]. Journal of Circuits Systems & Computers, 2014, 23(5):291-299

    [4] 安文, 杨俊峰, 赵羲, 等.高分辨率遥感影像的建筑物自动提取[J].测绘科学, 2014, 39(11):80-84 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201411018.htm

    An Wen, Yang Junfeng, Zhao Xi, et al. Building Automatic Extraction from High Resolution RS Images[J].Science of Surveying and Mapping, 2014, 39(11):80-84 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201411018.htm

    [5]

    Aytekln O, Erener A, Ulusoy I, Duzgun S. Unsupervised Building Detection in Complex Urban Environments from Multispectral Satellite Imagery[J]. International Journal of Remote Sensing, 2012, 33(7):2152-2177 doi: 10.1080/01431161.2011.606852

    [6] 陶超, 谭毅华, 蔡华杰, 等.面向对象的高分辨率遥感影像城区建筑物分级提取方法[J].测绘学报, 2010, 39(1):39-45 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001011.htm

    Tao Chao, Tan Yihua, Cai Huajie, et al. Object-oriented Method of Hierarchical Urban Building Extraction from High-resolution Remote-Sensing Imagery[J].Acta Geodaetica et Cartographica Sinica, 2010, 39(1):39-45 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001011.htm

    [7] 周亚男, 沈占锋, 骆剑承, 等.阴影辅助下的面向对象城市建筑物提取[J].地理与地理信息科学, 2010, 26(3):37-40 http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201003010.htm

    Zhou Yanan, Shen Zhanfeng, Luo Jiancheng, et al. Shadow-Assisted Object-Oriented Extraction of Urban Buildings[J].Geography and Geo-Information Science, 2010, 26(3):37-40 http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201003010.htm

    [8]

    Karantzalos K, Paragios N. Recognition-Driven Two-Dimensional Competing Priors Toward Automatic and Accurate Building Detection[J]. IEEE Transaction on Geoscience and Remote Sensing, 2009, 47(1):133-144 doi: 10.1109/TGRS.2008.2002027

    [9] 吴炜, 洛剑承, 沈占锋, 等.光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J].武汉大学学报·信息科学版, 2012(7):800-805 http://ch.whu.edu.cn/CN/abstract/abstract255.shtml

    Wu Wei, Luo Jiancheng, Shen Zhanfeng, et al. Building Exaction from High Resolution Remote Sensing Imagery Based on Spatial-Spectral Method[J].Geomatics and Information Science of Wuhan University, 2012, 37(7):800-805 http://ch.whu.edu.cn/CN/abstract/abstract255.shtml

    [10]

    Chen L, Zhao S, Han W, et al. Building Detection in an Urban Area Using LiDAR Data and QuickBird Imagery[J]. International Journal of Remote Sensing, 2012, 33(16):5135-5148 doi: 10.1080/01431161.2012.659355

    [11]

    Qin R, Fang W. A Hierarchical Building Detection Method for Very High Resolution Remotely Sensed Images Combined with DSM Using Graph Cut Optimization[J].Photogrammetric Engineering and Remote Sensing, 2014, 80(9):873-883 doi: 10.14358/PERS.80.9.873

    [12]

    Felzenszwalb P, McAllester D, Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part Model[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008

    [13]

    Felzenszwalb P, Girshick R, McAllester D, et al. Object Detection with Discriminatively Trained Part-based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645 doi: 10.1109/TPAMI.2009.167

    [14]

    Felzenszwalb P, Girshick R, McAllester D. Cascade Object Detection with Deformable Part Models[J]. Communications of the Acm, 2013, 56(9):97-105 doi: 10.1145/2500468

    [15]

    Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005

    [16]

    Desai C, Ramanan D, Fowlkes C. Discriminative Models for Multi-class Object Layout[J].International Journal of Computer Vision, 2011, 95(1):1-12 doi: 10.1007/s11263-011-0439-x

    [17]

    Blaschko M, Lampert C. Learning to Localize Objects with Structured Output Regression[C]. European Conference on Computer Vision, Marseille, France, 2008

    [18]

    Lampert C, Blaschko M, Hofmann T. Beyond Sliding Windows:Object Localization by Efficient Subwindow Search[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008

    [19]

    Pepik B, Stark M, Gehler P, et al. Teaching 3D Geometry to Deformable Part Models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012

    [20]

    Hossein A, Ivan L. Object Detection Using Strongly-supervised Deformable Part Models[C]. European Conference on Computer Vision, Florence, Italy, 2012

    [21]

    Hamed P, Deva R. Steerable Part Models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012

  • 期刊类型引用(4)

    1. 刘晓云,郭春喜,靳鑫洋,蒋涛. 2020年珠峰高程测量与确定流程解析. 大地测量与地球动力学. 2024(02): 111-115+127 . 百度学术
    2. 张建华,张庆涛,张涛,郑文科,陈小英. 顾及水准起算重力异常差异的珠峰地区垂直形变分析. 测绘科学. 2023(06): 1-8 . 百度学术
    3. 郭春喜,靳鑫洋,蒋涛,王斌,刘晓云. 2020与2005珠峰测量与高程确定异同. 测绘科学. 2023(07): 10-15 . 百度学术
    4. 党亚民,蒋涛,杨元喜,孙和平,姜卫平,朱建军,薛树强,张小红,蔚保国,罗志才,李星星,肖云,章传银,张宝成,李子申,冯伟,任夏,王虎. 中国大地测量研究进展(2019—2023). 测绘学报. 2023(09): 1419-1436 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  1816
  • HTML全文浏览量:  179
  • PDF下载量:  396
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-07-25
  • 发布日期:  2017-09-04

目录

    /

    返回文章
    返回