基于Gabor特征和稀疏表示的激光打印文档鉴别

Laser Print Document Identification Based on Gabor Feature and Sparse Representation Classification

  • 摘要: 为了解决计算机打印文档的自动鉴别问题,提出了Gabor特征结合稀疏表示的计算机激光打印文档鉴别算法。针对激光打印文档字符墨粉堆积纹理,提取字符图像的Gabor幅值特征,并将提取的特征进行主成分分析;最后利用不同的分类识别算法,对打印文档进行分类鉴别。在自建数据库上的实验结果表明了本文算法的有效性,打印文档源打印机准确鉴别率可达94.74%。

     

    Abstract: In order to automatically identify laser print documents, a new sparse representation algorithm based on Gabor features is proposed for print document identification. Considering that toner accumulation texture characteristics of laser print documents, the proposed method first extracts Gabor features of the image at multiple scales and multiple orientations, and then uses principal component analysis to reduce the Gabor feature dimension. At last, different classifiers are used to the identification of laser print documents. Experimental results on our database show its efficiency and effectiveness with a correct printer identification rate of 94.74%.

     

/

返回文章
返回