基于遥感的区域尺度森林地上生物量估算研究

段祝庚, 赵旦, 曾源, 赵玉金, 吴炳方, 朱建军

段祝庚, 赵旦, 曾源, 赵玉金, 吴炳方, 朱建军. 基于遥感的区域尺度森林地上生物量估算研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709
引用本文: 段祝庚, 赵旦, 曾源, 赵玉金, 吴炳方, 朱建军. 基于遥感的区域尺度森林地上生物量估算研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709
DUAN Zhugeng, ZHAO Dan, ZENG Yuan, ZHAO Yujin, WU Bingfang, ZHU Jianjun. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709
Citation: DUAN Zhugeng, ZHAO Dan, ZENG Yuan, ZHAO Yujin, WU Bingfang, ZHU Jianjun. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400-1408. DOI: 10.13203/j.whugis20140709

基于遥感的区域尺度森林地上生物量估算研究

基金项目: 国家自然科学基金资助项目(41201351,41401508);中国科学院战略性先导科技专项资助项目(XDA05050108);遥感科学国家重点实验室开放基金资助项目(OFSLRSS201417)。
详细信息
    作者简介:

    段祝庚,博士生,副教授,主要研究方向为机载LiDAR。E-mail:dzg47336628@163.com

    通讯作者:

    曾源,博士,副研究员。E-mail:zengyuan@radi.ac.cn

  • 中图分类号: P237.9

Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing

Funds: The National Natural Science Foundation of China, Nos. 41201351, 41401508; the Strategic Priority Research Program - Climate Change, No. XDA05050108; the Open Fund of State Key Laboratory of Remote Sensing Science, No. OFSLRSS201417.
  • 摘要: 森林是陆地生态系统最大的碳库,精确估算森林生物量是陆地碳循环研究的关键。首先从机载LiDAR数据中提取高度和密度统计量,采用逐步回归模型进行典型样区生物量估算;然后利用机载LiDAR数据估算的生物量作为样本数据,与多光谱遥感数据Landsat8 OLI的波段反射率及植被指数建立回归模型,实现区域尺度森林地上生物量估算。实验结果显示,机载LiDAR数据估算的鼎湖山样区生物量与地面实测生物量的相关性R2达0.81,生物量RMSE为40.85 t/ha,说明机载LiDAR点云数据的高度和密度统计量与生物量存在较高的相关性。以机载LiDAR数据估算的生物量为样本数据,结合多光谱遥感数据Landsat8 OLI估算粤西北地区的森林地上生物量,精度验证结果为:R2为0.58,RMSE为36.9 t/ha;针叶林、阔叶林和针阔叶混交林等3种不同森林类型生物量的估算结果为:R2分别为0.51(n=251)、0.58(n=235)和0.56(n=241),生物量RMSE分别为24.1 t/ha、31.3 t/ha和29.9 t/ha,估算精度相差不大。总体上看,利用遥感数据可以开展区域尺度的森林地上生物量估算,为森林固碳监测提供有力的参考数据。
    Abstract: Forested areas are the largest carbon pool in terrestrial ecosystems. Thus, a key link in terrestrial carbon pool research is estimating the forest biomass accurately. In this study, canopy height and density indices were calculated from LiDAR point cloud data. Statistical models between the biomass calculated from field data and LiDAR-derived variables were built. A stepwise regression was used for variable selection and the maximum coefficient of determination (R2). Techniques for improving variable selection were applied to select the LiDAR-derived variables to be included in the models. Lastly, the forest aboveground biomass as estimated by field data and LiDAR data, was regarded as sample data. The forest aboveground biomass calculated from LiDAR data, band reflectance and vegetation indices of Landsat8 OLI were used to establish the regression model for estimating the forest aboveground biomass at a regional scale. The result shows that: the correlation (R2) between the biomass estimated by LiDAR data and the biomass calculated from field inventory data was 0.81, and the RMSE of biomass is 40.85 t/ha, which means canopy height indices and density indices of airborne LiDAR point cloud data has a strong relationship with biomass. The biomass was estimated by airborne LiDAR data and Landsat8 OLI for coniferous forest, broad-leaved forest and coniferous and broadleaf mixed forest. The estimated correlation results showed that R2 was 0.51 (n=251), 0.58 (n=235) and 0.58 (n=241) respectively, and the RMSE for biomass was 24.1 t/ha, 31.3 t/ha and 29.9 t/ha respectively. The resulting estimated biomass for three different forest types is pretty much the same. On the whole, it is feasible and reliable to estimate forest aboveground biomass at regional scale based on remote sensing. The estimated biomass can provide useful data for the monitoring of forest ecosystem carbon fixation.
  • [1] Hou Yuanzhao, Wu Shuirong. Review on the Research of Valuation and Compensation for Forest Ecological Service[J]. World Forestry Research,2005, 18(3): 1-5(侯元兆,吴水容. 森林生态服务价值评价与补偿研究综述[J].世界林业研究,2005, 18(3): 1-5)
    [2] Bond-Lamberty B, Wang C, Gower S T. Aboveground and Below Ground Biomass and Sapwood Area Allometric Equations for Six Boreal Tree Species of Northern Manitoba[J]. Canadian Journal of Forest Research, 2002, 32(8): 1 441-1 450
    [3] Jiang Yanling, Zhou Guangsheng. Carbon Equilibrium in Larixgmelinii Forest and Impact of Global Change on It[J]. Chinese Journal of Applied Ecology, 2001, 12(4): 481-484(蒋延玲, 周广胜. 兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报,2001,12(4): 481-484)
    [4] Yang Qingpei, Li Mingguang, Wang Bosun, et al. Dynamics of Biomass and Net Primary Productivity in Succession of South Subtropical Forests in Southwest Guangdong[J]. Chinese Journal of Applied Ecology,2003, 14(12):2 136-2 140 (杨清培,李鸣光,王伯荪,等.粤西南亚热带森林演替过程中的生物量与净第一性生产力动态[J]. 应用生态学报,2003, 14(12):2 136-2 140)
    [5] Xing Yanqiu, Wang Lihai. Compatible Biomass Estimation Models of Natural Forests in Changbai Mountains Based on Forest Inventory[J]. Chinese Journal of Applied Ecology,2007, 18(1): 1- 8(邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007, 18(1): 1- 8)
    [6] Gibbs H K, Brown S, Niles J O, et al. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality[J]. Environmental Research Letters, 2007, 2(4):1-13
    [7] Feng Zongwei, Chen Chuying, Zhang Jiawu, et al. The Determination of Biomass of Pines Massoniana Stand in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 1982, 18(2): 127-134(冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134)
    [8] Foody G M, Cutler M E, Mcmorrow J, et al. Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data[J]. Global Ecology & Biogeography, 2001,10:379-387
    [9] Dong J R, Kaufmann R K, Myneni R B, et al. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks[J]. Remote Sensing of Environment, 2003, 84(3): 393-410
    [10] Li Deren, Wang Changwei, Hu Yueming, et al. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635(李德仁,王长委,胡月明,等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报·信息科学版, 2012, 37(6): 631-635)
    [11] Nelson R F, Krabill W B, Maclean G A. Determining Forest Canopy Characteristics Using Airborne Laser Data[J]. Remote Sensing of Environment, 1984, 15(3): 201-212
    [12] Nelson R F, Oderwald R G, Gregoire T G. Separating the Ground and Airborne Laser Sampling Phases to Estimate Tropical Forest Basal Area, Volume, and Biomass[J]. Remote Sensing of Environment, 1997, 60(3):311-326
    [13] Lefsky M A, Cohn W B, Parker G G. et al. LiDAR Remote Sensing for Ecosystem Studies[J]. BioScience, 2002, 52(1): 19-30
    [14] Naesset E T, Gobakken T, Holgren J, et al. Laser Scanning of Forest Resources: the Nordic Experience[J]. Scandinavian Journal of Forest Research, 2004, 19 (6): 482-499
    [15] Popescu S C, Wynne R H, Nelson R F. Measuring Individual Tree Crown Diameter with LiDAR and Assessing Its Influence on Estimating Forest Volume and Biomass[J]. Canadian Journal of Remote Sensing, 2003, 29(5): 564-577
    [16] Nelson R, Valenti M A, Short A, et al. A Multiple Resource Inventory of Delaware Using Airborne Laser Data[J]. BioScience, 2003, 53(10):981-992
    [17] Wulder M A, Seemann D. Forest Inventory Height Update Through the Integration of LiDAR Data with Segmented Landsat Imagery[J]. Canadian Journal of Remote Sensing, 2003, 29(5): 536-543
    [18] Wang Minghua, Zhang Xiaohong, Zeng Tao, et al. Preprocessing Algorithms for Filtering Airborne LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 224-227(王明华,张小红,曾涛,等. 机载LiDAR数据滤波预处理方法研究[J]. 武汉大学学报·信息科学版, 2010, 35(2): 224-227)
    [19] Sui Lichun, Zhang Yibin, Zhang Shuo, et al. Filtering of Airborne LiDAR Point Cloud Data Based on Progressive TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1 159-1 163(隋立春,张熠斌,张硕,等. 基于渐进三角网的机载LiDAR点云数据滤波[J]. 武汉大学学报·信息科学版, 2011, 36(10): 1 159-1 163)
    [20] Shen Jing, Liu Jiping, Lin Xiangguo. Airborne LiDAR Data Filtering by Morphological Reconstruction Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 167-170(沈晶,刘纪平,林祥国. 用形态学重建方法进行机载LiDAR数据滤波[J]. 武汉大学学报·信息科学版, 2011, 36(2): 167-170)
    [21] Nilsson M. Estimation of Tree Heights and Stand Volume Using an Airborne LiDAR System[J]. Remote Sensing of Environment, 1996, 56: 1-7
    [22] Richter R, Schlpfer D. Atmospheric/Topographic Correction for Satellite Imagery[R].DLR-IB, 565-02/10,Wessling,Germany,2005
    [23] Richter R, Muller A. De-shadowing of Satellite/Airborne Imagery[J]. International Journal of Remote Sensing, 2005, 26(15): 3 137-3 148
    [24] Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-Grass Prairie[C]. The 8th International Symposium on Remote Sensing of Environment, Pawnee National Grasslands, Colorado, Ann Arbor, MI, USA, 1972
    [25] Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[C]. The 3rd ERTS Symposium,NASA,Washington D C,USA, 1974
    [26] Major D J, Baret F, Guyot G. A Ratio Vegetation Index Adjusted for Soil Brightness[J].International Journal of Remote Sensing, 1990, 11(5): 727-740
    [27] Liu H Q, Huete A R. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 457-465
    [28] Dong T, Wu B. Estimate Faction of Photosynthetically Active Radiation with Three-band Vegetation Indices Based on HJ-CDD Satellite in Wheat[C]. 2012 First International Conference on Agro-Geoinformatics, Shanghai, China, 2012
    [29] Vincini M, Frazzi E. Comparing Narrow and Broad-Band Vegetation Indices to Estimate Leaf Chlorophyll Content in Planophile Crop Canopies[J]. Precision Agriculture, 2011, 12(3): 334-344
    [30] Wu B F, Zhang L, Yan C Z, et al. China Cover 2010: Methology and Features[C]. GeoInformatics, Hong Kong, China,2012
    [31] Ferster C J, Coops N C, Trofymow J A. Aboveground Large Tree Mass Estimation in a Coastal Forest in British Columbia Using Plot-level Metrics and Individual Tree Detection from LiDAR[J]. Canadian Journal of Remote Sensing, 2009,35(3):270-275
    [32] Lefsky M A, Cohen W B, Acker S A, et al. LiDAR Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-fir Western Hemlock Forests[J]. Remote Sensing of Environment, 1999, 70(3): 339-361
    [33] Naesset E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-stage Procedure and Field Data[J]. Remote Sensing of Environment, 2002, 80(1):88-99
    [34] Pang Yong, Zhao Feng, Li Zengyuan, et al. Forest Height Inversion Using Airborne LiDAR Technology[J]. Journal of Remote Sensing, 2008,12(1):152-158 (庞勇, 赵峰, 李增元,等.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158)
    [35] Næsset E, Gobakken T. Estimation of Above-and Below-ground Biomass Across Regions of the Boreal Forest Zone Using Airborne Laser[J]. Remote Sensing of Environment, 2008, 112(6): 3 079-3 090
    [36] Hame T, Salli A, Andersson K, et al. A New Methodology for the Estimation of Biomass of Conifer-dominated Boreal Forests Using NOAA AVHRR Data[J]. International Journal of Remote Sensing, 1997, 18(15): 3 211-3 243
    [37] Hame T. Landsat-aided Forest Site Type Mapping[J]. Photogrammetric Engineering and Remote Sensing, 1984, 50(8): 1 175-1 183
    [38] Guo Zhihua, Peng Shaolin, Wang Bosun. Eestimating Forest Biomass in Western Guangdong Using Landsat TM Data[J].Acta Ecollogical Sinica, 2002, 22(11): 1 832-1 839(郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J]. 生态学报,2002,22(11): 1 832-1 839)
  • 期刊类型引用(4)

    1. 王乐洋,邹传义. PEIV模型参数估计理论及其应用研究进展. 武汉大学学报(信息科学版). 2021(09): 1273-1283+1297 . 百度学术
    2. 钟光伟,符平贵,杨钢,张俊. 融合LSC和REHSM的地壳形变分析模型. 矿山测量. 2020(05): 27-30 . 百度学术
    3. 韩杰,张松林. 附加一次和二次等式约束的Partial-EIV模型及相应算法. 测绘科学技术学报. 2019(01): 17-22+27 . 百度学术
    4. 吕志鹏,隋立芬. 基于非线性高斯-赫尔默特模型的结构总体最小二乘法. 武汉大学学报(信息科学版). 2019(12): 1808-1815 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-09-21
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回