-
摘要: 为了对区域电离层延迟进行实时模型化,利用中国区域GPS实测资料,基于球冠谐函数模型、低阶球谐函数模型、多项式模型和Kriging内插方法,构建了电离层延迟模型。重点讨论了电离层垂直总电子含量(vertical total electron content,VTEC)的空间变异性、相关性的统计计算和Kriging内插估计方法,实现了中国区域VTEC格网实时建模。验证结果表明,高纬度地区VTEC拟合精度优于低纬度地区,Kriging内插估计和多项式模型结果的拟合内符合精度明显优于球冠谐函数模型和低阶球谐函数模型。但多项式拟合的格网,其方差则存在明显的边际效应,拟合区域中央精度较高,区域边缘地带精度明显下降;Kriging算法估计的格网点VTEC方差更符合实际情况,穿刺点多的地方,格网点精度较高。Abstract: For real-time regional VTEC(vertical total electron content) modeling over China, ionospheric modeling is realized based on spherical cap harmonic functions, low-degree spherical harmonic functions, polynomial models and Kriging interpolation techniques. This paper focuses on the spatial variability and relevance of VTEC and Kriging interpolation methodology to achieve real-time regional VTEC modeling using China regional GPS data. Results indicate that fitting accuracy in the high latitude areas is better than in lower latitude areas, Kriging interpolation and polynomial modeling show better performance than the spherical cap harmonic function and low-degree spherical harmonic function. But polynomial modeling has a marginal effect as fitting precision decreases rapidly while the distance to the center of the modeling region is increased. The variance of grid VTEC estimated using Kriging algorithm, in contrast conforms closely to the actual situation, with shows higher precision when the number of IPPs increases over the region.
-
-
表 1 Kriging内插结果CRIM与GIM的差异
Table 1 Difference Between CRIM and GIM Using Kriging Algorithm
年积日 差异/TECU 时段 1 2 3 4 5 6 7 8 9 10 11 12 218 RMS 3.90 2.28 3.42 5.02 4.11 4.85 5.12 5.60 4.11 3.80 2.27 2.52 mean -1.61 -1.36 -1.20 -0.61 -0.52 -1.18 0.64 1.38 0.46 0.52 0.44 -1.36 219 RMS 3.19 2.56 4.28 4.17 4.66 4.25 3.36 3.82 3.02 2.57 1.88 2.11 mean -1.95 -1.34 0.94 -1.44 0.28 -0.92 -0.95 -2.04 -2.07 -0.34 -0.12 -0.72 220 RMS 2.78 2.14 3.18 4.56 5.43 6.17 5.94 4.84 3.68 4.38 2.48 1.88 mean -1.54 -0.87 -0.76 -0.62 -0.28 0.43 1.96 1.18 -0.13 1.43 0.05 -0.96 221 RMS 2.98 2.41 3.42 5.23 4.60 6.78 8.92 3.27 3.32 3.79 2.20 1.92 mean -0.60 -1.57 -1.68 -0.53 -0.15 -0.03 2.81 -0.52 -0.30 0.47 -0.56 -1.34 222 RMS 2.86 2.16 3.57 3.46 4.49 6.23 4.52 4.45 2.82 3.24 1.92 1.64 mean -1.14 -0.10 -0.25 0.10 0.42 1.06 -0.53 -0.31 -1.02 -0.35 -0.43 -0.43 223 RMS 2.85 2.30 2.73 4.95 5.96 4.25 4.53 8.23 4.09 5.48 3.60 2.04 mean -0.38 -1.0 -1.0 -0.46 1.39 -0.02 0.62 1.79 -0.37 0.89 -0.36 -0.89 224 RMS 2.29 2.23 2.06 3.42 3.86 5.39 5.40 4.42 2.61 2.25 1.90 1.74 mean -1.01 -1.59 -1.24 -1.73 -0.27 -0.38 -0.40 -0.90 -1.68 -1.24 -1.0 -0.96 -
[1] 章红平,韩文慧,黄玲,等.地基GNSS全球电离层延迟建模[J].武汉大学学报·信息科学版,2012,37(10):1186-1189 Zhang Hongping, Han Wenhui, Huang Ling, et al. Modeling Global Ionospheric Delay with IGS Ground-based GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1186-1189
[2] 柳景斌.利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J].武汉大学学报·信息科学版,2008,33(8):792-795 Liu Jingbin. Modeling Regional Ionosphere Using GPS Measurements over China by Spherical Cap Harmonic Analysis Methodology[J].Geomatics and Information Science of Wuhan University, 2008, 33(8):792-795
[3] 章红平.基于地基GPS的中国区域电离层监测与延迟改正研究[D].上海:中国科学院上海天文台,2006 Zhang Hongping. Study on GPS-based China Regional Ionosphere Monitoring and Ionosphere Delay Correction[D]. Shanghai:Shanghai Astronomical Obsrvatory Chinese Academy of Sciences, 2006
[4] 侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990 Hou Jingru, Huang Jingxian. Theories and Methods of Geostatistics[M]. Beijing:Geology Press,1990
[5] Sarma D D. Geostatistics with Applications in Earth Sciences[M]. New Delhi:Capital Publishing Company, 2002
[6] Blanch J. An Ionospheric Estimation Algorithm for WAAS Based on Kriging[C]. ION GPS, Portland, OR, 2002
[7] Orús R, Hernández-Pajares M, Juan J M, et al. Improvement of Global Ionospheric VTEC Maps by Using Kriging Interpolation Technique[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2005, 67:1598-1609
[8] Stanislawskal J G.The Kriging Method of the Instaneous Mapping[J].Adv Space Res, 2002, 29(6):945-948
[9] 刘瑞源,刘国华,吴健,等.中国地区电离层foF2重构方法及其在短期预报中的应用[J].地球物理学报,2008,51(2):300-306 Liu Runyuan, Liu Guohua, Wu Jian, et al. Ionospheric foF2 Reconstruction and Its Application to the Short-Term Forecasting in China Region[J].Chinese J Geophys, 2008,51(2):300-306
[10] 毛田,万卫星,孙凌峰.用Kriging方法构建中纬度区域电离层TEC地图[J].空间科学学报,2007,27(4):279-285 Mao Tian, Wan Weixing, Sun Lingfeng. Central and Northern China TEC Map Using the Kriging Method[J].Chinese J Space Sci, 2007, 27(4):279-285
[11] 王军.GNSS区域电离层TEC监测及应用[D].北京:中国测绘科学研究院,2008 Wang Jun. Monitoring and Application of GNSS Regional Ionospheric TEC[D]. Beijing:Institute of Geodesy and Geodynamics Chinese Academy of Surveying and Mapping, 2008
[12] 李子申.GNSS/Compass电离层时延修正及TEC监测理论与方法研究[D].武汉:中国科学院测量与地球物理研究所,2012 Li Zishen. Study on the Mitigation of Ionospheric Delay and the Monitoring of Global Ionospheric TEC Based on GNSS/Compass[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2012
[13] Hernández-Pajares M, Juan J M, Sanz J, et al. The IGS VTEC Maps:A Reliable Source of Ionospheric Information Since 1998[J]. Journal of Geodesy, 2009, 83(3/4):263-275
-
期刊类型引用(46)
1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
2. 陈瑞瑞,孙颢月,朱紫若,蒋雪中,陈沈良,陈静. 黄河三角洲地面沉降研究进展与未来展望. 海岸工程. 2024(01): 1-23 . 百度学术
3. 赵凤阳,周吕,魏玉业. 融合改进鲸鱼算法解缠的梧州市地面沉降InSAR监测. 遥感信息. 2024(01): 52-58 . 百度学术
4. 侯永浩,张兴,李晓民,李宗仁. SBAS-InSAR技术在地质灾害调查中的应用. 北京测绘. 2024(10): 1477-1481 . 百度学术
5. 柳新强,姜刚,刘军峰,贺国伟. PS-InSAR和SBAS-InSAR的地表沉降监测对比研究——以雄安新区为例. 工程勘察. 2023(01): 62-67 . 百度学术
6. 曾敏,皮鹏程,赵信文,陈松,彭红霞,侯清芹,孙慧敏,薛紫萱. 基于PS-InSAR的珠江口典型填海造地区地面沉降时空特征研究. 华南地质. 2023(01): 116-126 . 百度学术
7. 李文慧,王志伟,赵月,王翔. 基于SNAP-StaMPS方法的高速公路沿线地面沉降监测. 测绘工程. 2023(03): 36-43 . 百度学术
8. 周定义,左小清,赵志芳,喜文飞,葛楚. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报. 2023(10): 1774-1783 . 百度学术
9. 刘泽洲,卢才武,章赛,李萌,和郑翔. 基于多阈值目标提取的时序InSAR矿区地表沉降监测研究. 中国矿业. 2022(08): 79-85 . 百度学术
10. 王新田,刘增珉,陈建忠,梁菲,孟萌,李天鹤. 山东省地表形变InSAR监测与分析. 测绘通报. 2022(S2): 130-134 . 百度学术
11. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
12. 杨利,薛东剑,王海方,付林,张婷. 五龙沟矿区时序InSAR地表形变监测. 中国矿业. 2021(03): 107-112 . 百度学术
13. 程琳琳,杨玉曼,李月颖,孙梦尧,王振威,焦路尧. 矿业型村镇转型期发展问题分析与策略研究:以北京市门头沟区为例. 中国矿业. 2021(03): 101-106 . 百度学术
14. 王辉,曾琪明,焦健,陈继伟. 结合序贯平差方法监测地表形变的InSAR时序分析技术. 北京大学学报(自然科学版). 2021(02): 241-249 . 百度学术
15. 付云霞,管勇,王晓丹,王建收,尹政,周晓雪,王青,徐美君. 大型河口三角洲地面沉降机制研究——以黄河三角洲为例. 海岸工程. 2021(02): 83-95 . 百度学术
16. 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨. 测绘科学. 2021(09): 67-75 . 百度学术
17. 柴华彬,胡吉彪,耿思佳. 融合实测数据的地表沉降SBAS-InSAR监测方法. 煤炭学报. 2021(S1): 17-24 . 百度学术
18. 程霞,张永红,邓敏,吴宏安,康永辉. Sentinel-1A卫星的黄河三角洲近期地表形变分析. 测绘科学. 2020(02): 43-51 . 百度学术
19. 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析. 遥感技术与应用. 2020(02): 416-423 . 百度学术
20. 向淇文,潘建平,张广泽,徐正宣,张定凯,涂文丽. 基于SBAS技术的川藏铁路折多山地区地表形变监测与分析. 测绘工程. 2020(04): 48-54+59 . 百度学术
21. 张金盈,崔靓,刘增珉,王新田,林琳,徐凤玲. 利用Sentinel-1 SAR数据及SBAS技术的大区域地表形变监测. 测绘通报. 2020(07): 125-129 . 百度学术
22. 狄桂栓. 基于InSAR技术的黄河三角洲区域地表形变浅析. 地理空间信息. 2020(09): 106-109+8 . 百度学术
23. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术
24. 韩红花. 黄河三角洲区域地表形变监测研究. 山东国土资源. 2020(11): 69-72 . 百度学术
25. 夏元平,陈志轩,张毅. 南昌市地面沉降InSAR监测及影响因子分析. 测绘科学. 2020(11): 115-122+129 . 百度学术
26. 贺跃光,肖亮. 某水溶开采矿区短基线集InSAR高相干点探测. 中国锰业. 2019(01): 89-93 . 百度学术
27. 张静,丁黄平,刘纯,谢文然,时雨. 基于InSAR技术的盘锦地区地面沉降研究. 世界地质. 2019(02): 574-580 . 百度学术
28. 韩红超,符华年,张文峰,温浩. InSAR、水准多维沉降监测体系建设及应用研究. 测绘通报. 2019(S1): 236-241 . 百度学术
29. 师芸,李伟轩,唐亚明,席磊,孟欣. 时序InSAR技术在地球环境监测及其资源管理中的应用:以交城-清徐地区为例. 武汉大学学报(信息科学版). 2019(11): 1613-1621 . 百度学术
30. 杨帆,王道顺,张磊,张子文. 基于时序InSAR的隧道工程形变监测与分析. 测绘与空间地理信息. 2019(10): 1-4 . 百度学术
31. 黄洁慧,谢谟文,王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究. 人民长江. 2019(12): 101-105 . 百度学术
32. 黄洁慧,谢谟文,王立伟. 基于差分干涉合成孔径雷达技术的米林滑坡形变监测. 科学技术与工程. 2019(25): 7-12 . 百度学术
33. 李锁乐,吴宏安,张永红,康永辉,左振华. 包头市地面沉降高分辨率时序InSAR监测. 测绘科学. 2018(09): 76-80 . 百度学术
34. 杨帆,张磊,张子文,赵增鹏. 利用短基线集InSAR技术监测抚顺市地面沉降. 测绘通报. 2018(03): 84-88 . 百度学术
35. 张静,冯东向,綦巍,周雪,赵玉星. 基于SBAS-InSAR技术的盘锦地区地面沉降监测. 工程地质学报. 2018(04): 999-1007 . 百度学术
36. 贺晓阳,赵盟,程存付. 小基线集技术在矿区地表形变监测中的应用. 河南科技. 2018(13): 97-98 . 百度学术
37. LIU Xiao,LIU Jie,FENG Xiuli. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China. 2018(03): 545-554 . 必应学术
38. 李达,邓喀中,高晓雄,牛海鹏. 基于SBAS-InSAR的矿区地表沉降监测与分析. 武汉大学学报(信息科学版). 2018(10): 1531-1537 . 百度学术
39. 张炜,张伟胜,张东升,胡文敏,孙毓言,唐佳佳. 采动覆岩活动规律的“空-地”监测技术. 中国矿业大学学报. 2018(06): 1212-1223 . 百度学术
40. 王小侣. 水电站大坝400V备自投改造研究. 河南科技. 2018(19): 90-91 . 百度学术
41. 张磊,杨帆,李超飞,赵增鹏,张子文. 宁波地面沉降的短基线集监测与分析. 测绘科学. 2017(12): 77-82 . 百度学术
42. 陈继伟,曾琪明,焦健,赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例. 国土资源遥感. 2017(04): 82-87 . 百度学术
43. 王萍. 沉降观测技术在高层建筑施工中的应用. 建材与装饰. 2017(35): 19-20 . 百度学术
44. 史秀保,徐宁,温浩,李春进. 一种小基线地表形变监测精度评价方法. 测绘通报. 2016(08): 70-73+91 . 百度学术
45. 于丹,杨子玉,庄岩,于均园. 时序分析法在沈阳地铁二号线变形预测的应用. 沈阳建筑大学学报(自然科学版). 2016(03): 453-458 . 百度学术
46. 王霖郁,李辉. 一种枝切法和质量图相结合的InSAR相位解缠算法. 应用科技. 2016(05): 49-53 . 百度学术
其他类型引用(25)