-
摘要: 针对基于指纹库的WiFi定位存在的点位重积、回跳,行人航位推算算法中误差积累的问题,提出了并实现了通过一种自适应加权扩展卡尔曼滤波对两种定位算法进行松耦合。首先给出了WiFi无线定位和行人航位推算进行位置解算的原理,采用渐消因子的自适应加权EKF算法实现了两者的融合,最后通过实测数据验证算法的有效性。试验表明,该方法在保持了WiFi定位单次定位高精度的特性的同时,继承了航位推算的连贯性,不仅减少了WiFi定位所存在的重复堆积点以及回跳点,并在一定程度上削弱了行人航位推算所存在的积累误差,提高了融合算法的效率,大大提高了室内定位的精度与稳定性。Abstract: According to the accumulation of points within WiFi locations based on the fingerprint map database, and error accumulation calculated by Pedestrian Dead Reckoning, a loose fusion coupling algorithm by Adaptive Weighted Extended Kalman Filter is presented. This method maintains the high-precision of WiFi locations. In the meanwhile, the algorithm inherited the coherence from PDR(Pedestrian Dead Reckoning), which not only decreased the accumulated rebound points, but weakened the error accumulation, enhanced the efficiency of the fusion algorithm, and finally improved the precision and stability of indoor localization. The result denotes that this method works in the indoor environment quite well, which improves almost 22.9% according to WiFi results.
-
Keywords:
- indoor localization /
- pedestrian dead reckoning /
- extended Kalman filter /
- WiFi /
- fading factor /
- adaptive weighted
-
-
表 1 自适应因子及其中误差
Table 1 Adaptive Factor with Its Error
数值 自适应因子 1 1.1 1.2 1.3 1.4 1.5 中误差/m 3.110 3.024 2.999 3.017 3.302 3.063 表 2 4个方案各自的误差分析
Table 2 Error Analysis of Different Location Algorithms
方案1 方案2 方案3 方案4 中误差/m 4.037 5.993 3.111 2.618 平均误差/m 3.135 4.990 2.904 2.344 最大误差/m 10.375 12.650 4.829 4.708 表 3 辅助粒子滤波不同抽样数的中误差与运算时间
Table 3 Error and Computing Time for Particle Filter with Different Samples
单点粒子数 100 200 300 400 500 中误差/m 4.34 3.58 3.25 3.09 3.12 运算时间/s 1.218 2.867 6.536 10.798 16.048 -
[1] 张世哲.基于惯性传感器和WiFi的室内定位系统的设计与实现[D].北京:北京邮电大学, 2012:23-42 Zhang Shizhe. Indoor Positioning System Design and Implementation Based on Inertial Sensor and WiFi[D]. Beijing:Beijing University of Posts and Telecommunications, 2012:23-42
[2] Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee:Zero-Effort Crowdsourcing for Indoor Localization[C].Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, ACM, Istanbul, Turkey, 2012
[3] 高为广, 杨元喜, 崔先强, 等. IMU/GPS组合导航系统自适应Kalman滤波算法[J].武汉大学学报·信息科学版, 2006, 31(5):466-469 http://ch.whu.edu.cn/CN/abstract/abstract2466.shtml Gao Weiguang, Yang Yuanxi, Cui Xianqiang, et al. Application of Adaptive Kalman Algorithm in IMU/GPS Integrated Navigation System[J].Geomatics and Information Science of Wuhan University, 2006, 31(5):466-469 http://ch.whu.edu.cn/CN/abstract/abstract2466.shtml
[4] 王坚, 刘超, 高井祥, 等.基于抗差EKF的GNSS/INS紧组合算法研究[J].武汉大学学报·信息科学版, 2011, 36(5):596-600 http://ch.whu.edu.cn/CN/abstract/abstract555.shtml Wang Jian, Liu Chao, Gao Jingxiang, et al. GNSS/INS Tightly Coupled Navigation Model Based on Robust EKF[J].Geomatics and Information Science of Wuhan University, 2011, 36(5):596-600 http://ch.whu.edu.cn/CN/abstract/abstract555.shtml
[5] Wang Jian, Hu A, Liu Chao, et al. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System[J]. Sensors, 2015, 15(4):7096-7124 doi: 10.3390/s150407096
[6] 李增科, 王坚, 高井祥, 等.利用SVM的GPS/INS组合导航滤波发散抑制方法研究[J].武汉大学学报·信息科学版, 2013, 38(10) 1217-1220 Li Zengke, Wang Jian, Gao Jingxiang, et al. A Method to Prevent GPS/INS Integrated Navigation Filtering Divergence Based on SVM[J].Geomatics and Information Science of Wuhan University, 2013, 38(10):1217-1220
[7] 张俪文, 汪云甲, 曹新运.嵌入式设备室内地图的瓦片金字塔优化[J].导航定位学报, 2014, 2(4):22-25 http://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201404005.htm Zhang Linwen, Wang Yunjia, Cao Xinyun. Enhanced Tile-Pyramid Model in Indoor Maps on Embedded Device[J]. Journal of Navigation and Positioning, 2014, 2(4):22-25 http://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201404005.htm
[8] 田辉, 夏林元, 莫志明, 等.泛在无线信号辅助的室内外无缝定位方法与关键技术[J].武汉大学学报·信息科学版, 2009, 34(11):1372-1376 Tian Hui, Xia Lingyuan, Mo Zhiming, et al. Signals of Opportunity Assisted Ubiquitous Positioning and Its Key Elements for Outdoor/Indoor Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11):1372-1376
[9] Youss E F, Agrawala M A, Shankar A, et al. A Probabilistic Clustering-based Indoor Location Determination System[R].Technical Reports of the Computer Science Department, USA, 2002
[10] Beauregard S, Haas H. Pedestrian Dead Reckoning:A Basis for Personal Positioning[C]. Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, Newark, NJ, USA, 2006
[11] Judd T, Levi R W. Dead Reckoning Navigational System Using Accelerometer to Measure Foot Impacts[P]. US Patent 5, 583, 776, USA, 1996-12-10
[12] Li F, Zhao C, Ding G, et al. A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors[C].Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Beijing, 2012
[13] Weinberg H. Using the ADXL202 in Pedometer and Personal Navigation Applications[J]. Analog Devices AN-602 Application Note, 2002, 2:1-6
[14] Kang W, Nam S, Han Y, et al. Improved Heading Estimation for Smartphone-based Indoor Positioning Systems[C].Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium on IEEE, Sydney, Australia, 2012
[15] 杨清.基于指纹的无线室内精确定位方法研究[D].杭州:浙江大学, 2011 Yang Qing. Research on Fingerprint-based Wireless Indoor Location Algorithm[D]. Hangzhou:Zhejiang University, 2011
[16] 杨元喜, 高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报·信息科学版, 2006, 31(11):980-982 http://ch.whu.edu.cn/CN/abstract/abstract2598.shtml Yang Yuanxi, Gao Weiguang. Comparison of Two Fading Filters and Adaptively Robust Filter[J].Geomatics and Information Science of Wuhan University, 2006, 31(11):980-982 http://ch.whu.edu.cn/CN/abstract/abstract2598.shtml
[17] Nurminen H, Ristimaki A, Ali-Loytty S, et al. Particle Filter and Smoother for Indoor Localization[C].Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on IEEE, Montbéliard, 2013
-
期刊类型引用(10)
1. 胡文强,胡建鹏. 基于区域限制的WiFi/PDR融合实时定位算法. 电子科技. 2022(10): 21-26 . 百度学术
2. 肖红玉,贺辉,陈红顺. AED急救地图设计研究. 计算机技术与发展. 2021(07): 198-203 . 百度学术
3. 刘武平,呙维,朱欣焰,熊维茜,李洁玮. 面向三边测量定位的信标节点优选算法. 武汉大学学报(信息科学版). 2020(02): 296-302 . 百度学术
4. 李宗锋. 5G无线探针应用与优化初步研究. 科技广场. 2020(05): 52-60 . 百度学术
5. 刘庆,关维国,李顺康,王芳. 基于扩展Kalman滤波的室内WiFi-PDR融合定位算法. 计算机工程. 2019(04): 66-71+77 . 百度学术
6. 张加丁,陈崇成,叶晓燕,方荟. 一种智能手机室内位置共享的方法. 导航定位学报. 2019(03): 17-23 . 百度学术
7. 冯昆,何涛,汪云甲. 一种基于智能手机的室内融合定位方法. 测绘通报. 2019(S2): 6-10+37 . 百度学术
8. 王奉冲,周君,路朝阳,安树怀,肖文军,林柏桦. 基于EKF滤波的UWB无人机室内定位研究. 电子制作. 2018(16): 15-16 . 百度学术
9. 柳景斌,黄百川,张斌,黎蕾蕾,杨帆,张振兵,李正,童鹏飞. 利用双天线商用WiFi信道状态信息估计到达角. 武汉大学学报(信息科学版). 2018(12): 2167-2172 . 百度学术
10. 方孟元,赵康. WiFi/MEMS组合室内定位方法研究. 测绘通报. 2016(S2): 262-266 . 百度学术
其他类型引用(13)