利用渐消自适应EKF算法进行PDR-WiFi融合定位

An Fusion Positioning for PDR and WiFi Based on Fading Adaptive Weighted EKF

  • 摘要: 针对基于指纹库的WiFi定位存在的点位重积、回跳,行人航位推算算法中误差积累的问题,提出了并实现了通过一种自适应加权扩展卡尔曼滤波对两种定位算法进行松耦合。首先给出了WiFi无线定位和行人航位推算进行位置解算的原理,采用渐消因子的自适应加权EKF算法实现了两者的融合,最后通过实测数据验证算法的有效性。试验表明,该方法在保持了WiFi定位单次定位高精度的特性的同时,继承了航位推算的连贯性,不仅减少了WiFi定位所存在的重复堆积点以及回跳点,并在一定程度上削弱了行人航位推算所存在的积累误差,提高了融合算法的效率,大大提高了室内定位的精度与稳定性。

     

    Abstract: According to the accumulation of points within WiFi locations based on the fingerprint map database, and error accumulation calculated by Pedestrian Dead Reckoning, a loose fusion coupling algorithm by Adaptive Weighted Extended Kalman Filter is presented. This method maintains the high-precision of WiFi locations. In the meanwhile, the algorithm inherited the coherence from PDR(Pedestrian Dead Reckoning), which not only decreased the accumulated rebound points, but weakened the error accumulation, enhanced the efficiency of the fusion algorithm, and finally improved the precision and stability of indoor localization. The result denotes that this method works in the indoor environment quite well, which improves almost 22.9% according to WiFi results.

     

/

返回文章
返回