-
摘要: 利用GNSS网络位移时空序列,基于弹性位错理论,构建了断层滑移时空分布的动态卡尔曼滤波反演模型。考虑断层面的非均匀滑动,将断层面细分为多个子断层,获取了较精细的滑移空间分布,并顾及了先验信息和拉普拉斯平滑约束。鉴于断层滑移引起的地表形变具有高空间相关性的特点,利用整个GNSS观测网络数据一起参与反演,有效分离了空间不相关的噪声。实验结果表明,当断层形变位移量和噪声水平相当,且点位分布间隔沿走向和倾向至少与子断层长宽等同时,均能反演得到正确的断层滑移时空分布。若信噪比不变,测站分布密度继续增大时,对反演效果提高并不显著,但能够容忍较低信噪比的观测数据。Abstract: According to the OKADA fault dislocation theory, the model for spatio-temporal inversion of fault slips is built based on Kalman filtering using the GNSS displacement time-space series. To acquire more subtle distribution of a fault slip, the fault is divided into many subfaults. The priori information and the Laplacian smoothing constraint is taken into account. According to the high spatial coherence of surface deformation from fault slip,the spatially-uncorrelated noise is separated effectively by a Kalman filtering inversion of the whole GNSS network. Simulation experiments indicate that since the displacement from the fault deformation is equivalent to the noises level, and GNSS point distribution intervals in strike and dip are equivalent to the length and width of the subfault at least, then the spatiotemporal distribution of the fault slip can be obtained accurately. When the distribution density of the observation stations continues to increase, improvements of the inversion effect are not apparent. However, the high distribution density of stations is very helpful to improve the Signal Noise Ratio(SNR) of the inversion.
-
Keywords:
- GNSS /
- dynamic Kalman filter /
- fault slip /
- inversion
-
-
表 1 断层参数
Table 1 Fault Parameters
下边缘中心位置(N,E)/km 方位角/(°) 长/km 宽/km 下边缘深/km 倾角/(°) (50,50) 90 40 5 5 70 -
[1] Ikari M J, Marone C, Saffer D M, et al. Slip Weakening as a Mechanism for Slow Earthquakes[J]. Nature Geoscience, 2013, 6(6):468-472 doi: 10.1038/ngeo1818
[2] Perfettini H, Avouac J P, Tavera H, et al. Seismic and Aseismic Slip on the Central Peru Megathrust[J]. Nature, 2010, 465(7294):78-81 doi: 10.1038/nature09062
[3] Segall P, Matthews M. Time Dependent Inversion of Geodetic Data[J]. Journal of Geophysical Research:Solid Earth, 1997,102(B10):22391-22409 doi: 10.1029/97JB01795
[4] McGuire J J, Segall P. Imaging of Aseismic Fault Slip Transients Recorded by Dense Geodetic Networks[J]. Geophysical Journal International, 2003, 155(3):778-788 doi: 10.1111/gji.2003.155.issue-3
[5] 方颖,江在森,顾国华.用网络滤波方法探讨华北地块边界带运动[J].地震研究, 2007(2):152-156 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200702008.htm Fang Ying, Jiang Zaisen, Gu Guohua. Network Filtering Method for North China Block Boundary Movement Analysis[J]. Journal of Seismological Research, 2007(2):152-156 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200702008.htm
[6] 王武星,马丽,陈棋福,等.扩展网络反演滤波方法及其在鲜水河断裂带上的初步实验[J].地震研究, 2008(1):58-63 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200801011.htm Wang Wuxing, Ma Li, Chen Qifu, et al. Extended Network Inversion Filter and Experimental Study on the Xianshuihe Fault Zone[J]. Journal of Seismological Research, 2008(1):58-63 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200801011.htm
[7] Kositsky A P, Avouac J P. Inverting Geodetic Time Series with a Principal Component Analysis-based Inversion Method[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B03401), DOI: 10.1029/2009JB006535
[8] Radiguet M, Cotton F, Vergnolle M, et al. Spatial and Temporal Evolution of a Long Term Slow Slip Event:the 2006 Guerrero Slow Slip Event[J]. Geophysical Journal International, 2011, 184(2):816-828 doi: 10.1111/gji.2011.184.issue-2
[9] 陈光齐,武艳强,江在森,等.GPS资料反映的日本东北Mw 9.0地震的孕震特征[J].地球物理学报, 2013, 56(3):848-856 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201303015.htm Chen Guangqi, Wu Yanqiang, Jiang Zaisen, et al. Characteristics of Seismogenic Model of Mw 9.0 Earthquake in Tohoku, Japan Reflected by GPS Data[J]. Chinese J Geophys, 2013, 56(3):848-856 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201303015.htm
[10] 丁开华,许才军,温扬茂.汶川地震震后形变的GPS反演[J].武汉大学学报·信息科学版, 2013, 38(2):131-135 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201302002.htm Ding Kaihua, Xu Caijun, Wen Yangmao. Postseismic Deformation Associated with the 2008 Wenchuan Earthquake GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):131-135 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201302002.htm
[11] 徐克科,伍吉仓,王成. 利用GNSS位移时空序列进行断层无震蠕滑特征分析[J].武汉大学学报·信息科学版, 2015, 40(9):1247-1252 http://ch.whu.edu.cn/CN/abstract/abstract3329.shtml Xu Keke, Wu Jicang, Wang Cheng. Analysis of Fault Aseismic Slip Feature Based on GNSS Displacement Time-Space Series[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1247-1252 http://ch.whu.edu.cn/CN/abstract/abstract3329.shtml
[12] 徐克科,伍吉仓.基于GNSS时空数据的瞬态无震蠕滑信息检测[J].地球物理学报, 2015, 40(7):2330-2338 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507011.htm Xu Keke, Wu Jicang. Detecting Transient Aseismic Slip Using GNSS Spatio-Temporal Data[J]. Chinese J Geophys, 2015, 40(7):2330-2338 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507011.htm
[13] Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 198575(N4):1135-1154 http://cn.bing.com/academic/profile?id=2124799255&encoded=0&v=paper_preview&mkt=zh-cn
[14] Dong D, Fang P, Bock Y, et al. Spatio-Temporal Filtering Using Principal Component Analysis and Karhunen-loeve Expansion Approaches for Regional GPS Network Analysis[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B3):1581-1600 http://cn.bing.com/academic/profile?id=1964466148&encoded=0&v=paper_preview&mkt=zh-cn
[15] Jonsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 711 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389 doi: 10.1785/0120000922
[16] Schwarz K P, Cannon M E, Wong R V C. A Comparison of GPS Kinematic Models for the Determination of Position and Velocity Along a Trajectory[J]. Manuscripta Geodaetica, 1989, 14:345-353
[17] Agnew D C. Realistic Simulations of Geodetic Network Data:The Fakenet Package[J]. Seismological Research Letters, 2013, 84(3):426-432 doi: 10.1785/0220120185
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)