-
摘要: 基于2003~2012年的GRACE卫星重力资料,采用最小二乘拟合的方法,构建了时变重力场统一模型IGG-TVG2013。该模型以球谐系数的形式表达,在考虑趋势项和周期项等经验参数的基础上,还考虑了加速度项和潮汐模型误差、大地震等因素的影响。将IGG-TVG2013模型与GRACE资料进行了比较分析,在全球92%以上的区域二者符合精度优于±1 ugal;利用该模型外推预测了2013年1~6月的重力场变化,结果与GRACE实测数据符合较好。这表明IGG-TVG2013模型不但能较好地描述重力场的连续时空变化,而且具有一定的短期预测能力。Abstract: We established a large-scale time-variable unified gravity field model IGG-TVG2013 based on GRACE satellite data from 2003 to 2012 using the least square method. This model is composed of annual and semi-annual trends and periodic terms, usually of each spherical harmonic coefficient. Besides those empirical parameters, an acceleration term, tidal aliasing error, and large earthquakes are taken into account. Acceleration is a modification to linear trend to detect and express more details in signals. Tidal aliasing error is the residual error in a tide model that must be carefully removed from GRACE solutions; a co-seismic jump in the gravity field may disturb the secular trend. An evaluation of IGG-TVG2013 solutions and corresponding GRACE solutions shows that the RMSE value in 92% of global grids was less than one ugal. Extrapolation results for the first half of 2013 using the IGG-TVG2013 model shows this model has good potential in short-term forecasting. We concluded that the IGG-TVG2103 model can effectively describe the time-space variability of gravity field.
-
致谢: 感谢CSR提供的GRACE RL-05 Level-2数据。
-
表 1 全球重力异常变化的外推精度分析/ugal
Table 1 Analysis of Extrapolation Accuracy of Global Gravity Anomaly Changes /ugal
步长 时间 最小值 最大值 平均值 均方根 1 2013-01 -6.17 3.87 0.06 0.940 2 2013-02 -5.93 3.49 0.05 0.935 3 2013-03 -5.69 3.99 0.06 0.968 4 2013-04 -6.02 6.26 0.05 0.958 5 2013-05 -6.48 6.84 -0.02 0.966 6 2013-06 -5.91 4.63 -0.005 0.935 -
[1] Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophys Res Lett, 2004, 31(9):L09607 http://cn.bing.com/academic/profile?id=1588827410&encoded=0&v=paper_preview&mkt=zh-cn
[2] Wahr J, Swenson S, Zlotnicki V, et al. Time-variable Gravity from GRACE: First Results[J]. Geophys Res Lett, 2004, 31:L11501 http://cn.bing.com/academic/profile?id=2046930921&encoded=0&v=paper_preview&mkt=zh-cn
[3] Zhang Zizhan. Theory and Applications of Satellite Altimetry and Gravity Data Assimilation [D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2008
[4] Bruinsma S, Lemoine J M, Biancale R, et al. CNES/GRGS 10-day Gravity Field Models (Release 2) and Their Evaluation[J]. Adv Space Res, 2010, 45:587-601 doi: 10.1016/j.asr.2009.10.012
[5] Bettadpur S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005[OL]. ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf, 2012
[6] Swenson S, Wahr J. Post-processing Removal of Correlated Errors in GRACE Data[J]. Geophys Res Lett, 2006, 33: L08402 http://cn.bing.com/academic/profile?id=2060576920&encoded=0&v=paper_preview&mkt=zh-cn
[7] Zhang Z Z, Chao B F, Lu Y, et al. An Effective Filtering for GRACE Time-variable Gravity: Fan Filter[J]. Geophys Res Lett, 2009, 36:L17311 doi: 10.1029/2009GL039459
[8] Cheng M K, Tapley B D. Variations in the Earth's oblateness During the Past 28 Years[J]. J Geophys Res, 2004, 109:B09402 http://cn.bing.com/academic/profile?id=2031705591&encoded=0&v=paper_preview&mkt=zh-cn
[9] Whitehouse P L, Bentley M J, Milne G A, et al. A New Glacial Isostatic Adjustment Model for Antarctica: Calibrated and Tested Using Observations of Relative Sea-level Change and Present-day Uplift Rates[J]. Geophys J Int, 2012, 190:1 464-1 482 doi: 10.1111/gji.2012.190.issue-3
[10] Simpson M J R, Milne G A, Huybrechts P, et al. Calibrating a Glaciological Model of the Greenland Ice Sheet from the Last Glacial Maximum to Present-day Using Field Observations of Relative Sea Level and Ice Extent[J]. Quaternary Sci Rev, 2009, 28:1 631-1 657 doi: 10.1016/j.quascirev.2009.03.004
[11] Rangelova E, Sideris M G, Kim J W. On the Capabilities of the Multi-channel Singular Spectrum Method for Extracting the Main Periodic and Non-periodic Variability from Weekly GRACE Data[J]. J of Geodyn, 2012, 54: 64-78 doi: 10.1016/j.jog.2011.10.006
[12] Li Jin. Detection of Coseismic Changes Associated with Large Earthquakes by Gravity Gradient Changes from GRACE[D]. Wuhan: Wuhan University, 2011
[13] Sibylle V, Holger S, Jürgen M. Inter-annual Water Mass Variations from GRACE in Central Siberia[J]. J Geod, 2013, 87:287-299 doi: 10.1007/s00190-012-0597-9
[14] Chen J L, Wilson C R, Tapley B D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet[J]. Science, 2006, 313(5 795): 1 958-1 960
[15] Velicogna I. Increasing Rates of Ice Mass Loss from the Greenland and Antarctic Ice Sheets Revealed by GRACE[J]. Geophys Res Lett, 2009, 36:L19503 doi: 10.1029/2009GL040222
[16] Oliver B. On the Computation of Mass-change Trends from GRACE Gravity Field Time-series[J]. J Geodyn, 2012, 61:120-128 doi: 10.1016/j.jog.2012.03.007
[17] Svendsen P L, Andersen O B, Nielsen A A. Acceleration of the Greenland Ice Sheet Mass Loss as Observed by GRACE: Confidence and Sensitivity[J]. Earth Planet Sci Lett, 2013, 364:24-29 doi: 10.1016/j.epsl.2012.12.010
[18] Han S C, Shum C K, Matsumoto K. GRACE Observations of M2 and S2 Ocean Tides Underneath the Filchner-Ronne and Larsen Ice Shelves, Antarctica[J]. Geophys Res Lett, 2005, 32: L20311 doi: 10.1029/2005GL024296
[19] Ray R D, Luthcke S B. Tide Model Errors and GRACE Gravimetry: Towards a More Realistic Assessment[J]. Geophys J Int, 2006, 167:1 055-1 059 doi: 10.1111/gji.2006.167.issue-3
[20] Chen J L, Wilson C R, Tapley B D, et al. GRACE Detects Coseismic and Postseismic Deformation from the Sumatra-Andaman Earthquake[J]. Geophys Res Lett, 2007, 34:L13302 http://cn.bing.com/academic/profile?id=2141155811&encoded=0&v=paper_preview&mkt=zh-cn
[21] Linage C de, Rivera L, Hinderer J, et al. Separation of Coseismic and Postseismic Gravity Changes for the 2004 Sumatra-Andaman Earthquake from 4.6 yr of GRACE Observations and Modelling of the Coseismic Change by Normal-modes Summation[J]. Geophys J Int, 2009, 176(3):695-714 doi: 10.1111/gji.2009.176.issue-3
[22] Wang Lei, Shum C K, Frederik J S, et al. Coseismic Slip of the 2010 Mw 8.8 Great Maule, Chile, Earthquake Quantified by the Inversion of GRACE Observations[J]. Earth Planet Sci Lett, 2012, 335-336:167-179 http://cn.bing.com/academic/profile?id=2126113995&encoded=0&v=paper_preview&mkt=zh-cn
[23] Wang L, Shum C K, Simons F J, et al. Coseismic and Postseismic Deformation of the 2011 Tohoku-Oki Earthquake Constrained by GRACE Gravimetry[J]. Geophys Res Lett, 2012, 39:L07301 http://cn.bing.com/academic/profile?id=1657023268&encoded=0&v=paper_preview&mkt=zh-cn
[24] Chen J L, Wilson C R, Tapley B D, et al. 2005 Drought Event in the Amazon River Basin as Measured by GRACE and Estimated by Climate Models[J]. J Geophys Res, 2009, 114:B05404 http://cn.bing.com/academic/profile?id=2160726523&encoded=0&v=paper_preview&mkt=zh-cn
[25] Chen J L, Wilson C R, Tapley B D. The 2009 Exceptional Amazon Flood and Interannual Terrestrial Water Storage Change Observed by GRACE[J]. Water Resour Res, 2010, 46:W12526 http://cn.bing.com/academic/profile?id=1500296370&encoded=0&v=paper_preview&mkt=zh-cn
[26] Feng Wei, Jean-Michel L, Zhong Min, et al. Terrestrial Water Storage Changes in the Amazon Basin Measured by GRACE During 2002-2010[J]. Chinese J Geophys(in Chinese), 2012, 55(3): 814-821 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201203010.htm
[27] Lee H, Shum C K, Howat I M, et al, Continuously Accelerating Ice Loss over Amundsen Sea Catchment, West Antarctica, Revealed by Integrating Altimetry and GRACE Data[J]. Earth Planet Sci Lett, 2012, 321-322:74-80 http://www.docin.com/p-859746434.html 冯伟, Jean-Michel L, 钟敏, 等.利用重力卫星GRACE监测亚马逊流域2002-2010年的陆地水变化[J].地球物理学报, 2012, 55(3): 814-821 http://www.docin.com/p-859746434.html
[28] Velicogna I, Wahr J. Time-variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data[J]. Geophys Res Lett, 2013, 40: 3 055-3 063 doi: 10.1002/grl.50527
[29] Ogawa R, Chao B F, Heki K, et al. Acceleration Signal in GRACE Time-variable Gravity in Relation to Interannual Hydrological Changes[J]. Geophys J Int, 2011, 184:673-679 doi: 10.1111/gji.2011.184.issue-2
[30] Syed T H, Famiglietti J S, Rodell M, et al. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS[J]. Water Resour Res, 2008, 44:W02433 http://cn.bing.com/academic/profile?id=2127393309&encoded=0&v=paper_preview&mkt=zh-cn
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)