大数据与广义GIS

陆锋, 张恒才

陆锋, 张恒才. 大数据与广义GIS[J]. 武汉大学学报 ( 信息科学版), 2014, 39(6): 645-654. DOI: 10.13203/j.whugis20140148
引用本文: 陆锋, 张恒才. 大数据与广义GIS[J]. 武汉大学学报 ( 信息科学版), 2014, 39(6): 645-654. DOI: 10.13203/j.whugis20140148
LU Feng, ZHANG Hengcai. Big Data and Generalized GIS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 645-654. DOI: 10.13203/j.whugis20140148
Citation: LU Feng, ZHANG Hengcai. Big Data and Generalized GIS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 645-654. DOI: 10.13203/j.whugis20140148

大数据与广义GIS

基金项目: 国家863计划资助项目(2013AA120305,2012AA12A211);国家自然科学基金资助项目(41271408)
详细信息
    作者简介:

    陆锋,博士,研究员,博士生导师。研究方向为导航与位置服务、空间数据库技术、交通地理信息系统等。

  • 中图分类号: P208

Big Data and Generalized GIS

Funds: The National High Technology Research and Development Program of China(863Program),Nos.2013AA120305,2012AA12A211;the National Natural Science Foundation of China,No.41271408.
More Information
    Author Bio:

    LU Feng,PhD,researcher,PhD supervisor.His research interests cover location based services,spatial DBMS,and GISfor transportation.

  • 摘要: 目的 普适计算基础设施和数据处理技术的发展催生了大数据概念,而大数据时空粒度的不断细化加速了地理空间信息的泛化过程。阐述了大数据时代地理空间信息泛化的显著特征,进而提出GIS概念广义化的迫切需求,从数据采集与整理、数据管理与集成、数据分析与计算三个方面分析了广义GIS所面临的技术挑战,重点探讨了互联网蕴含地理空间数据采集、移动对象数据库和异构动态数据管理、移动对象轨迹数据挖掘、复杂网络分析等方面的研究进展与存在的问题,并展望了广义GIS时代地理计算与城市计算、社会计算的融合趋势。
    Abstract: Objective The development of an ubiquitous computing infrastructure and data processing technologiesare giving birth to big data,and the continuous refining of the spatial-temporal granularities of big da-ta speeds up the generalization of geo-spatial information.In this paper,the distinctive characteristicsof generalized geo-spatial information are investigated,and the urgent need for a more generalized con-cept of GIS are clarified.Then the technical challenges for general GIS are set forward in terms of datacollection and cleaning,data management and integration,and data analysis and computing.The pro-gress is summarized and the research issues are discussed in geo-spatial data collection with Internettext mining,moving object database,dynamic and heterogeneous data management,moving trajectorydata mining,and complex network analysis.The fusion of geocomputation,urban computing and so-cial computing in the near future is considered at the end of the paper.
计量
  • 文章访问数:  4700
  • HTML全文浏览量:  154
  • PDF下载量:  1923
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-03
  • 修回日期:  2014-06-04
  • 发布日期:  2014-06-04

目录

    /

    返回文章
    返回