Monitoring Ground Subsidence in the Modern Yellow River Delta Based on SBAS Time-series Analysis
-
摘要: 本文将SBAS (small baseline subset)时序分析技术应用于现代黄河三角洲地面沉降监测。选取覆盖研究区的39景ERS1/2 SAR数据,提取了1992至2000年现代黄河三角洲地面沉降速率,结果与水准观测数据基本保持一致,研究发现胜利油田中心开采区最大地面沉降速率可达-33.2 mm/a。研究表明,黄河三角洲地面沉降主要由石油开采(采油和抽取浅层地下水用于回注)、地下水抽取、地表载荷增加、沉积物固结压实引发,沉积物固结压实和石油开采对现代黄河三角洲地面沉降的贡献显著。
-
关键词:
- 地面沉降 /
- SBAS时序分析技术 /
- ERS1/2 /
- 现代黄河三角洲
Abstract: Land subsidence in the modern Yellow River Delta at high spatial and temporal resolution was deduced from SBAS time-series analysis of ERS1/2 data. The experimental results show that land subsidence in the modern Yellow River Delta is widespread and unevenly distributed with large differences. The average subsidence rate is -5.1 mm/yr, while the highest subsidence rate of -33.2 mm/yr occurring in the subsidence funnel formed by an oil field. The InSAR results are shown to be reliable, when compared with leveling survey measurements. Ground based leveling measurements included 53 leveling points were used to evaluate the accuracy of our SBAS time-series analysis results with a consistent deformation trend between the two sets of results. A comparison between leveling points and their nearest SBAS points at the same time interval showed they were in complete agreement, while the mean square error between them was at the mm level. The main influencing factors differ by region. Severe land subsidence however, is caused by oil extraction including extracting nearby shallow groundwater used for artificial water injection after oil exploitation and sediment consolidation. Oil exploitation was the main influencing factor and responsible for the rapid, patchy subsidence evident at Dongying city, Hekou district, Gudao town, Zhuangxi, and the Gudong oilfield. Groundwater extraction for making salt and oilfield water injection is likely responsible for land subsidence in the Liuhu township and at the Guangrao salt pan. Increased surface load aggravated land subsidence in the old urban district of Dongying city, and sediment consolidation might be considerable after the lobe is abandoned.-
Keywords:
- land subsidence /
- SBAS /
- ERS1/2 /
- Yellow River Delta
-
-
[1] Syvitski J P. Deltas at Risk[J]. Sustainability Science, 2008, 3(1):23-32 [2] Teatini P, Tosi L, Strozzi T. Quantitative Evidence That Compaction of Holocene Sediments Drives the Present Land Subsidence of the Po Delta, Italy[J]. Journal of Geophysical Research:Solid Earth(1978-2012), 2011, 116(B8):407-417 [3] Tornqvist T E, Wallace D J, Storms J E A, et al. Mississippi Delta Subsidence Primarily Caused by Compaction of Holocene Strata[J]. Nature Geoscience, 2008, 1(3):173-176 [4] Aly M H, Klein A G, Zebker H A, et al. Land Subsidence in the Nile Delta of Egypt Observed by Persistent Scatterer Interferometry[J]. Remote Sensing Letters, 2012, 3(7):621-630 [5] Liu Guiwei, Huang Haijun, Du Tingqin, et al. Effective Factors of Land Subsidence in the Yellow River Delta[J]. Marine Sciences, 2011, 35(8):43-50(刘桂卫,黄海军,杜廷芹,等.黄河三角洲地区地面沉降驱动因素研究[J]. 海洋科学, 2011, 35(8):43-50) [6] Du Tingqin, Huang Haijun, Bie Jun. Land Subsidence in the Modern Yellow River Delta and Its Impacts Upon Its Evolvement[J]. Marine Sciences, 2011, 35(9):78-84(杜廷芹,黄海军,别君.现代黄河三角洲地面沉降对洲体演变的影响[J]. 海洋科学, 2011, 35(9):78-84) [7] Bie Jun, Huang Haijun, Fan Hui, et al. Ground Subsidence of the Modern Yellow River Delta and Its Causes[J]. Marine Geology & Quaternary Geology, 2006, 26(4):29-35(别君,黄海军,樊辉等.现代黄河三角洲地面沉降及其原因分析[J].海洋地质与第四纪地质, 2006, 26(4):29-35) [8] Syvitski J P, Kettner A J, Overeem I, et al. Sinking Deltas Due to Human Activities[J]. Nature Geoscience, 2009, 2(10):681-686 [9] Higgins S, Overeem I, Tanaka A, et al. Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China[J]. Geophysical Research Letters, 2013, 40(15):3898-3902 [10] Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433):138-142 [11] Massonnet D, Thatcher W, Vadon H. Detection of Postseismic Fault-Zone Collapse Following the Landers Earthquake[J]. Nature, 1996, 382(6592):612-616 [12] Zebker H A, Rosen P A, Goldstein R M, et al. On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry:The Landers Earthquake[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19617-19634 [13] Dong Yusen, Linlin G, Hsingchun C, et al. Mine Subsidence Monitoring by Differential InSAR[J]. Geomatics and Information Science of Wuhan University 2007, 32(10):888-891(董玉森, Linlin G, Hsingchun C,等. 基于差分雷达干涉测量的矿区地面沉降监测研究[J]. 武汉大学学报\5信息科学版, 2007, 32(10):888-891) [14] Berardino P, Fornaro G, Lanari R, et al. A New algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 [15] Casu F, Manzo M, Lanari R. A Quantitative Assessment of the SBAS Algorithm Performance for Surface Deformation Retrieval from DInSAR Data[J]. Remote Sensing of Environment, 2006, 102(3):195-210 [16] Liu Y, Huang H J. Characterization and Mechanism of Regional Land Subsidence in the Yellow River Delta, China[J]. Natural Hazards, 2013, 68(2):687-709 [17] Xue C T. Historical Changes in the Yellow-river Delta, China[J]. Marine Geology, 1993, 113(3/4):321-330 [18] Liu Y X, Huang H J, Qiu Z F, et al. Detecting Coastline Change from Satellite Images Based on Beach Slope Estimation in a Tidal Flat[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:165-176 [19] Shi C X, Zhang D, You L Y, et al. Land Subsidence as a Result of Sediment Consolidation in the Yellow River Delta[J]. Journal of Coastal Research, 2007, 23(1):173-181 [20] Du Tingqin. Study on the Characteristics of Land Subsidence in the Mordern Yellow (Huanghe) River Delta[D]. Beijing:Chinese Academy of Sciences, 2009(杜廷芹.现代黄河三角洲地区地面沉降特征研究[J].北京:中国科学院研究生院, 2009) [21] Zheng T Y, Zhao L, Chen L. A Detailed Receiver Function Image of the Sedimentary Structure in the Bohai Bay Basin[J]. Physics of the Earth and Planetary Interiors, 2005, 152(3):129-143 [22] Li Guangxue, Zhuang Zhenyu, Han Deliang. Stratigraphic Sequences and Characterist Ics of Geological Environment Since the Late Period of Last Glacial Age Along Southern Shore of Bohai Sea[J]. Journal of Ocean University of Qingdao, 1998, 28(1):165-170(李广雪,庄振业,韩德亮.末次冰期晚期以来地层序列与地质环境特征——渤海南部地区沉积序列研究[J].青岛海洋大学学报, 1998, 28(1):165-170) [23] Hooper A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letters, 2008, 35(16):302-307 [24] Luo Sanming, Du Kaifu, Wan Wenni, et al. Ground Subsidence Rate Inversion of Large Temporal and Spatial Scales Based on Extended PSInSAR Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1128-1134(罗三明, 杜凯夫,万文妮,等.利用PSInSAR方法反演大时空尺度地表沉降速率[J].武汉大学学报\5信息科学版, 2014, 39(9):1128-1134) [25] Wang Xiaogang, Zou Zuguang, Wang Xiuqin, et al. Analysis on Effected Factors of Land Subsidence in Dongying District[J]. Shandong Land and Resources, 2006, 22(5):50-53(王小刚,邹祖光,王秀芹,等.东营市城区地面沉降影响因素[J].山东国土资源, 2006, 22(5):50-53) [26] Huang Liren, Hu Huimin, Yang Guohun. Sea Level Change Along the Western and Southern Coast of Bohai Sea and Recent Crustal Vertical Movement in Adjacent Area[J]. Crustal Deformation and Earthquake, 1991, 11(1):1-9(黄立人,胡惠民,杨国华.渤海西、南岸的海面变化及邻近地区的现代地壳垂直运动[J]. 地壳形变与地震, 1991, 11(1):1-9) [27] Zhang Bo, Liu Guiyi, Fan Liqin, et al. Environmental Problems and Its Prevention Countermeasures of Underground Water in South of Huanghe Delta[J]. Shandong Land and Resources, 2004, 20(5):51-54(张波,刘桂仪,范立芹,等.黄河三角洲南部地下水环境问题与对策[J]. 山东国土资源, 2004, 20(5):51-54) [28] Liu Guiwei, Huang Haijun, Du Tingqin, et al. Effective Factors of Land Subsidence in the Yellow River Delta[J]. Marine Sciences 2011, 35(8):43-50(刘桂卫,黄海军,杜廷芹,等.黄河三角洲地区地面沉降驱动因素研究[J]. 海洋科学, 2011, 35(8):43-50) -
期刊类型引用(46)
1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
2. 陈瑞瑞,孙颢月,朱紫若,蒋雪中,陈沈良,陈静. 黄河三角洲地面沉降研究进展与未来展望. 海岸工程. 2024(01): 1-23 . 百度学术
3. 赵凤阳,周吕,魏玉业. 融合改进鲸鱼算法解缠的梧州市地面沉降InSAR监测. 遥感信息. 2024(01): 52-58 . 百度学术
4. 侯永浩,张兴,李晓民,李宗仁. SBAS-InSAR技术在地质灾害调查中的应用. 北京测绘. 2024(10): 1477-1481 . 百度学术
5. 柳新强,姜刚,刘军峰,贺国伟. PS-InSAR和SBAS-InSAR的地表沉降监测对比研究——以雄安新区为例. 工程勘察. 2023(01): 62-67 . 百度学术
6. 曾敏,皮鹏程,赵信文,陈松,彭红霞,侯清芹,孙慧敏,薛紫萱. 基于PS-InSAR的珠江口典型填海造地区地面沉降时空特征研究. 华南地质. 2023(01): 116-126 . 百度学术
7. 李文慧,王志伟,赵月,王翔. 基于SNAP-StaMPS方法的高速公路沿线地面沉降监测. 测绘工程. 2023(03): 36-43 . 百度学术
8. 周定义,左小清,赵志芳,喜文飞,葛楚. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报. 2023(10): 1774-1783 . 百度学术
9. 刘泽洲,卢才武,章赛,李萌,和郑翔. 基于多阈值目标提取的时序InSAR矿区地表沉降监测研究. 中国矿业. 2022(08): 79-85 . 百度学术
10. 王新田,刘增珉,陈建忠,梁菲,孟萌,李天鹤. 山东省地表形变InSAR监测与分析. 测绘通报. 2022(S2): 130-134 . 百度学术
11. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
12. 杨利,薛东剑,王海方,付林,张婷. 五龙沟矿区时序InSAR地表形变监测. 中国矿业. 2021(03): 107-112 . 百度学术
13. 程琳琳,杨玉曼,李月颖,孙梦尧,王振威,焦路尧. 矿业型村镇转型期发展问题分析与策略研究:以北京市门头沟区为例. 中国矿业. 2021(03): 101-106 . 百度学术
14. 王辉,曾琪明,焦健,陈继伟. 结合序贯平差方法监测地表形变的InSAR时序分析技术. 北京大学学报(自然科学版). 2021(02): 241-249 . 百度学术
15. 付云霞,管勇,王晓丹,王建收,尹政,周晓雪,王青,徐美君. 大型河口三角洲地面沉降机制研究——以黄河三角洲为例. 海岸工程. 2021(02): 83-95 . 百度学术
16. 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨. 测绘科学. 2021(09): 67-75 . 百度学术
17. 柴华彬,胡吉彪,耿思佳. 融合实测数据的地表沉降SBAS-InSAR监测方法. 煤炭学报. 2021(S1): 17-24 . 百度学术
18. 程霞,张永红,邓敏,吴宏安,康永辉. Sentinel-1A卫星的黄河三角洲近期地表形变分析. 测绘科学. 2020(02): 43-51 . 百度学术
19. 卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析. 遥感技术与应用. 2020(02): 416-423 . 百度学术
20. 向淇文,潘建平,张广泽,徐正宣,张定凯,涂文丽. 基于SBAS技术的川藏铁路折多山地区地表形变监测与分析. 测绘工程. 2020(04): 48-54+59 . 百度学术
21. 张金盈,崔靓,刘增珉,王新田,林琳,徐凤玲. 利用Sentinel-1 SAR数据及SBAS技术的大区域地表形变监测. 测绘通报. 2020(07): 125-129 . 百度学术
22. 狄桂栓. 基于InSAR技术的黄河三角洲区域地表形变浅析. 地理空间信息. 2020(09): 106-109+8 . 百度学术
23. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术
24. 韩红花. 黄河三角洲区域地表形变监测研究. 山东国土资源. 2020(11): 69-72 . 百度学术
25. 夏元平,陈志轩,张毅. 南昌市地面沉降InSAR监测及影响因子分析. 测绘科学. 2020(11): 115-122+129 . 百度学术
26. 贺跃光,肖亮. 某水溶开采矿区短基线集InSAR高相干点探测. 中国锰业. 2019(01): 89-93 . 百度学术
27. 张静,丁黄平,刘纯,谢文然,时雨. 基于InSAR技术的盘锦地区地面沉降研究. 世界地质. 2019(02): 574-580 . 百度学术
28. 韩红超,符华年,张文峰,温浩. InSAR、水准多维沉降监测体系建设及应用研究. 测绘通报. 2019(S1): 236-241 . 百度学术
29. 师芸,李伟轩,唐亚明,席磊,孟欣. 时序InSAR技术在地球环境监测及其资源管理中的应用:以交城-清徐地区为例. 武汉大学学报(信息科学版). 2019(11): 1613-1621 . 百度学术
30. 杨帆,王道顺,张磊,张子文. 基于时序InSAR的隧道工程形变监测与分析. 测绘与空间地理信息. 2019(10): 1-4 . 百度学术
31. 黄洁慧,谢谟文,王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究. 人民长江. 2019(12): 101-105 . 百度学术
32. 黄洁慧,谢谟文,王立伟. 基于差分干涉合成孔径雷达技术的米林滑坡形变监测. 科学技术与工程. 2019(25): 7-12 . 百度学术
33. 李锁乐,吴宏安,张永红,康永辉,左振华. 包头市地面沉降高分辨率时序InSAR监测. 测绘科学. 2018(09): 76-80 . 百度学术
34. 杨帆,张磊,张子文,赵增鹏. 利用短基线集InSAR技术监测抚顺市地面沉降. 测绘通报. 2018(03): 84-88 . 百度学术
35. 张静,冯东向,綦巍,周雪,赵玉星. 基于SBAS-InSAR技术的盘锦地区地面沉降监测. 工程地质学报. 2018(04): 999-1007 . 百度学术
36. 贺晓阳,赵盟,程存付. 小基线集技术在矿区地表形变监测中的应用. 河南科技. 2018(13): 97-98 . 百度学术
37. LIU Xiao,LIU Jie,FENG Xiuli. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China. 2018(03): 545-554 . 必应学术
38. 李达,邓喀中,高晓雄,牛海鹏. 基于SBAS-InSAR的矿区地表沉降监测与分析. 武汉大学学报(信息科学版). 2018(10): 1531-1537 . 百度学术
39. 张炜,张伟胜,张东升,胡文敏,孙毓言,唐佳佳. 采动覆岩活动规律的“空-地”监测技术. 中国矿业大学学报. 2018(06): 1212-1223 . 百度学术
40. 王小侣. 水电站大坝400V备自投改造研究. 河南科技. 2018(19): 90-91 . 百度学术
41. 张磊,杨帆,李超飞,赵增鹏,张子文. 宁波地面沉降的短基线集监测与分析. 测绘科学. 2017(12): 77-82 . 百度学术
42. 陈继伟,曾琪明,焦健,赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例. 国土资源遥感. 2017(04): 82-87 . 百度学术
43. 王萍. 沉降观测技术在高层建筑施工中的应用. 建材与装饰. 2017(35): 19-20 . 百度学术
44. 史秀保,徐宁,温浩,李春进. 一种小基线地表形变监测精度评价方法. 测绘通报. 2016(08): 70-73+91 . 百度学术
45. 于丹,杨子玉,庄岩,于均园. 时序分析法在沈阳地铁二号线变形预测的应用. 沈阳建筑大学学报(自然科学版). 2016(03): 453-458 . 百度学术
46. 王霖郁,李辉. 一种枝切法和质量图相结合的InSAR相位解缠算法. 应用科技. 2016(05): 49-53 . 百度学术
其他类型引用(25)
计量
- 文章访问数: 2404
- HTML全文浏览量: 125
- PDF下载量: 659
- 被引次数: 71