基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化

许剑辉, 舒红

许剑辉, 舒红. 基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化[J]. 武汉大学学报 ( 信息科学版), 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039
引用本文: 许剑辉, 舒红. 基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化[J]. 武汉大学学报 ( 信息科学版), 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039
XU Jianhui, SHU Hong. DEnKF-based Assimilation of MODIS-Derived Snow Cover Products into Common Land Model Considering the Model Sub-grid Heterogeneity[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039
Citation: XU Jianhui, SHU Hong. DEnKF-based Assimilation of MODIS-Derived Snow Cover Products into Common Land Model Considering the Model Sub-grid Heterogeneity[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 156-162. DOI: 10.13203/j.whugis20140039

基于DEnKF方法的考虑次网格变异性的MODIS雪盖同化

基金项目: 湖北省自然科学基金(2014CFB725);国家自然科学基金(41171313);广州地理研究所优秀青-创新人才基金。
详细信息
    作者简介:

    许剑辉,博士,主要从事时空统计与数据同化研究。xujianhui306@163.com

    通讯作者:

    舒红,博士,教授。shu_hong@whu.edu.cn

  • 中图分类号: P237.9

DEnKF-based Assimilation of MODIS-Derived Snow Cover Products into Common Land Model Considering the Model Sub-grid Heterogeneity

Funds: The Hubei Provincial Natural Science Foundation of China, No. 2014CFB725; the National Natural Science Foundation of China, No. 41171313; the Creative Talents Fund of Guangzhou Institute of Geography.
  • 摘要: 基于通用陆面模型(CoLM)和确定性集合卡尔曼滤波算法发展了一个考虑模型次网格变异性的MODIS雪盖同化方案,提高雪深模拟的估计精度。利用北疆阿勒泰地区5个气象站点2007年11月至2008年4月逐日雪深观测数据对同化结果进行了验证。结果表明,该同化方案不需要对MODIS雪盖观测数据进行扰动,能明显提高雪深模拟的精度。另外,雪深同化结果与地面观测雪深具有一致的时间变化趋势,能准确地反映积雪深度在各个不同时段的变化特性。
    Abstract: The use of perturbed observations in the traditional ensemble Kalman filter (EnKF) introduces uncertainties and results in sub-optimal model state estimates. A modified EnKF method, the deterministic ensemble Kalman filter (DEnKF), can approach the analysis error covariance matrix without perturbing observations. As a forecast operator, the common land model (CoLM) is advantageous for sub-grid heterogeneity analysis. To reduce some errors stemming from the uncertainty in snow data assimilation, a new DEnKF-based snow data assimilation method is proposed for considering model sub-grid heterogeneity. The proposed method was used to assimilate the MODIS-derived snow cover products into CoLM for improving simulated snow depth. The daily snow depth of five meteorological stations from November 2007 to April 2008 in Altay is used for validation. The experimental results show that the DEnKF-based assimilation method can improve the simulated snow depth effectively. The improved snow depth does not only show the consistent time trends with in-situ snow depth but also reflects time-varying characteristics for different seasons.
  • [1] Su H, Yang Z,Niu G, et al. Enhancing the Estimation of Continental-scale Snow Water Equivalent by Assimilating MODIS Snow Cover with the Ensemble Kalman Filter[J]. Journal of Geophysical Research:Atmospheres (1984-2012), 2008, 113(D8):D08120
    [2] Liu Hai, Chen Xiaoling, Song Zhen, et al. Study of Characteristic Parametric Selection and Model Construction for Snow Depth Retrieval from MODIS Image[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):113-116(刘海,陈晓玲,宋珍,等. MODIS影像雪深遥感反演特征参数选择与模型研究[J]. 武汉大学学报\5信息科学版, 2011, 36(1):113-116)
    [3] Liu Yan,Ruan Huihua, Zhang Pu, et al. Kriging Interpolation of Snow Depth at the North of Tianshan Mountains Assisted by MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4):403-405(刘艳,阮惠华,张璞,等. 利用MODIS数据研究天山北麓Kriging雪深插值[J]. 武汉大学学报\5信息科学版, 2012, 37(4):403-405)
    [4] Liu Y, Peters-Lidard C D, Kumar S, et al. Assimilating Satellite-Based Snow Depth and Snow Cover Products for Improving Snow Predictions in Alaska[J]. Advances in Water Resources, 2013, 54:208-227
    [5] Zaitchik B F, Rodell M. Forward-looking Assimilation of MODIS-derived Snow-covered Area into a Land Surface Model[J]. Journal of Hydrometeorology, 2009, 10(1):130-148
    [6] Slater A G, Clark M P. Snow Data Assimilation via an Ensemble Kalman Filter[J].Journal of Hydrometeorology, 2006, 7(3):478-493
    [7] Rodell M, Houser P R. Updating a Land Surface Model with MODIS-derived Snow Cover[J]. Journal of Hydrometeorology, 2004, 5(6):1064-1075
    [8] Fletcher S J, Liston G E,Hiemstra C A, et al. Assimilating MODIS and AMSR-E Snow Observations in a Snow Evolution Model[J]. Journal of Hydrometeorology, 2012, 13(5):1475-1492
    [9] De Lannoy G E L J, Reichle R H, Houser P R, et al. Satellite-scale Snow Water Equivalent Assimilation into a High-resolution Land Surface Model[J]. Journal of Hydrometeorology, 2010, 11(2):352-369
    [10] De Lannoy G E L J, Reichle R H, Arsenault K R, et al. Multiscale Assimilation of Advanced Microwave Scanning Radiometer-EOS Snow Water Equivalent and Moderate Resolution Imaging Spectroradiometer Snow Cover Fraction Observations in Northern Colorado[J]. Water Resources Research, 2012, 48(1):W01522
    [11] Arsenault K R, Houser P R, De Lannoy G E L J, et al. Impacts of Snow Cover Fraction Data Assimilation on Modeled Energy and Moisture Budgets[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(14):7489-7504
    [12] Sakov P, Oke P R. A Deterministic Formulation of the Ensemble Kalman Filter:An Alternative to Ensemble Square Root Filters[J]. Tellus A, 2008, 60(2):361-371
    [13] Dai Y, Zeng X, Dickinson R E, et al. The Common Land Model[J].Bulletin of the American Meteorological Society, 2003, 84(8):1013-1023
    [14] Tian Xiangjun,Xie Zhenghui. A Land Surface Soil Moisture Data Assimilation in Consideration of the Model Subgrid-scale Heterogeneity and Soil Water Thawing and Freezing[J]. Science in China (D):Earth Science, 2008, 38(6):741-749(田向军,谢正辉. 考虑次网格变异性和土壤冻融过程的土壤湿度同化方案[J]. 中国科学D辑:地球科学. 2008, 38(6):741-749)
    [15] Evensen G. Sequential Data Assimilation with a Nonlinear Quasi-geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics[J]. Journal of Geophysical Research:Oceans (1978-2012), 1994, 99(C5):10143-10162
    [16] Evensen G. The Ensemble Kalman Filter:Theoretical Formulation and Practical Implementation[J]. Ocean Dynamics, 2003, 53(4):343-367
  • 期刊类型引用(14)

    1. 林尚纬,杜晓,张宏伟,吴晨琛,王艳东,周琦,朱玲,陈家阁,万咏涛. 基于多源数据的全球路网融合生产应用研究. 地理空间信息. 2025(01): 90-94+122 . 百度学术
    2. 王艳东,何国雄,吴晨琛,林尚纬,刘波,王勇,李志超,张英勇. 基于匹配置信度的路网几何特征融合方法研究. 测绘与空间地理信息. 2024(01): 9-12 . 百度学术
    3. 李朝奎,李婷,周新邵,唐炉亮,张新长,胡焜豪. 基于模糊层次理论的城市群路网匹配模型构建及其应用. 地球科学. 2024(08): 3020-3028 . 百度学术
    4. 张政,江南,曹一冰,张江水,杨振凯. 基于改进重力模型的签到数据好友关系判断方法. 武汉大学学报(信息科学版). 2022(04): 604-612+638 . 百度学术
    5. 张新长,何显锦,孙颖,黄健锋,张志强. 多尺度空间数据联动更新技术研究现状及展望. 测绘学报. 2022(07): 1520-1535 . 百度学术
    6. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 . 百度学术
    7. 贾涛,李琦,马楚,李雨芊. 武汉市出租车轨迹二氧化碳排放的时空模式分析. 武汉大学学报(信息科学版). 2019(08): 1115-1123 . 百度学术
    8. 张博,张猛,王非,范红超. VGI数据与地形图数据的自动融合研究. 武汉大学学报(信息科学版). 2019(11): 1708-1714 . 百度学术
    9. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 . 百度学术
    10. 陈万鹏,崔虎平. 基于相似性度量的城市路网实体匹配算法. 测绘与空间地理信息. 2018(12): 39-42+46 . 百度学术
    11. 张寿选. 空间目标匹配在“天地图·福建”道路数据融合中的应用. 地理信息世界. 2017(05): 92-96 . 百度学术
    12. 孙群. 多源矢量空间数据融合处理技术研究进展. 测绘学报. 2017(10): 1627-1636 . 百度学术
    13. 张锡. 稀有事件Logitsic模型及其在我国上市公司财务困境预测中的应用研究. 时代金融. 2017(08): 218-220 . 百度学术
    14. 唐晓,刘启贵,隋全恒. 关联规则分析和logistic模型的相关性研究. 中国卫生统计. 2017(05): 805-807+811 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数:  1374
  • HTML全文浏览量:  64
  • PDF下载量:  1087
  • 被引次数: 36
出版历程
  • 收稿日期:  2014-09-28
  • 发布日期:  2016-02-04

目录

    /

    返回文章
    返回