基于自适应亮度基准漂移的十字路口交通图像增强处理研究

刘操, 郑宏, 黎曦

刘操, 郑宏, 黎曦. 基于自适应亮度基准漂移的十字路口交通图像增强处理研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1381-1385. DOI: 10.13203/j.whugis20130717
引用本文: 刘操, 郑宏, 黎曦. 基于自适应亮度基准漂移的十字路口交通图像增强处理研究[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1381-1385. DOI: 10.13203/j.whugis20130717
LIU Cao, ZHENG Hong, LI Xi. A Method for Intersection Traffic Image Enhancement Based on Adaptive Brightness Baseline Drift[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1381-1385. DOI: 10.13203/j.whugis20130717
Citation: LIU Cao, ZHENG Hong, LI Xi. A Method for Intersection Traffic Image Enhancement Based on Adaptive Brightness Baseline Drift[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1381-1385. DOI: 10.13203/j.whugis20130717

基于自适应亮度基准漂移的十字路口交通图像增强处理研究

基金项目: 国家973计划资助项目(2012CB719905)。
详细信息
    作者简介:

    刘操,博士生,主要从事模式识别与图像处理系统研究。E-mail:lc1000@whu.edu.cn

    通讯作者:

    郑宏,博士,教授。E-mail:zh@whu.edu.cn

  • 中图分类号: P237.3

A Method for Intersection Traffic Image Enhancement Based on Adaptive Brightness Baseline Drift

Funds: The National Key Basic Research Development Program (973 Program) of China, No.2012CB719905.
  • 摘要: 针对大多数增强方法未能同时考虑图像与光照强度、拍摄时间之间关系的问题,根据不同时刻的光照强度变化,提出了一种基于自适应亮度基准漂移的全天候十字路口交通图像的增强算法。首先依据不同时刻的光照变化建立亮度基准曲线,然后由亮度基准曲线和亮度实时反馈建立自适应亮度基准值模型,最后对图像的亮度分量运用亮度基准值模型自适应增强。实验结果证明了该方法在全天候不同光照条件下图像增强的有效性以及不同天气条件下增强的鲁棒性。
    Abstract: As most enhancement methods do not consider the simultaneous relationship among images, light intensity, and shooting times, this paper proposes an enhancement algorithm for all-weather intersection traffic images based on adaptive brightness baseline drift (ABBD) according to illumination variations at different times. The algorithm establishes a brightness benchmark curve according to the changing illumination at different times, and then an adaptive brightness benchmark model is set up based on the brightness benchmark curve and the real-time brightness feedback. The proposed algorithm uses the brightness benchmark model to enhance the brightness of the image adaptively. Experimental results show the method's effectiveness for image enhancement in all-weather and different light conditions, as well as its robustness under different weather conditions.
  • [1] Yang Haitao, Chang Yilin, Wang Jing, et al. A New Automatic Exposure Algorithm for Video Cameras Using Luminance Histogram[J]. Acta Photonica Sinica, 2007, 27(5): 841-847(杨海涛, 常义林, 王静, 等. 一种基于亮度直方图的自动曝光控制方法[J]. 光学学报, 2007, 27(5): 841-847)
    [2] Yang Zuoting, Ruan Ping, Zhai Bo. Auto-exposure Algorithm for Scenes with High Dynamic Range Based on Image Entropy[J]. Acta Photonica Sinica, 2013, 42(6): 742-746(杨作廷, 阮萍, 翟波. 基于图像熵的高动态范围场景的自动曝光算法[J]. 光子学报, 2013, 42(6): 742-746)
    [3] He R, Wang Z, Xiong H, et al.Single Image Dehazing with White Balance Correction and Image Decomposition[C]. 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, 2012
    [4] Kao W C, Cheng L W, Chien C Y, et al.Robust Brightness Measurement and Exposure Control in Real-time Video Recording[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1 206-1 216
    [5] Zhang J, Gao B, Gu X. Traffic Images Enhancement Based on Vanishing Point Detection and Atmospheric Scattering Model[C]. 2010 3rd International Congress on Image and Signal Processing (CISP), Yantai, China, 2010
    [6] Singh K, Kapoor R. Image Enhancement Using Exposure Based Sub Image Histogram Equalization[J]. Pattern Recognition Letters, 2014, 36(1): 10-14
    [7] Zhou Z, Sang N, Hu X. Global Brightness and Local Contrast Adaptive Enhancement for Low Illumination Color Image[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(6): 1 795-1 799
    [8] Zeng F, Wu Q, Du J. Foggy Image Enhancement Based on Filter Variable Multi-Scale Retinex[J].Applied Mechanics and Materials, 2014, 505(1): 1 041-1 045
    [9] Wang Mei, Wang Guohong. An Image Enhancement Method of Nighttime Blurred Vehicle Plate Based on BHPF[J]. Geomatics and Information Science of Wuhan University, 2008,33(9): 951-954(王枚, 王国宏. 基于 BHPF 的夜间车牌图像增强方法[J]. 武汉大学学报·信息科学版, 2008, 33(9): 951-954)
    [10] Li Li, Jin Weiqi, Xu Chao, et al. Color Image Enhancement Using Nonlinear Sub-Block Overlapping Local Equilibrium Algorithm Under Fog and Haze Weather Conditions[J]. Transactions of Beijing Institute of Technology, 2013, 33(5): 516-522(李力, 金伟其, 徐超, 等. 雾霾天气彩色图像的局域非线性变换增强算法[J]. 北京理工大学学报, 2013, 33(5): 516-522)
    [11] Wu B F, Juang J H.Adaptive Vehicle Detector Approach for Complex Environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 817-827
  • 期刊类型引用(4)

    1. 王乐洋,邹传义. PEIV模型参数估计理论及其应用研究进展. 武汉大学学报(信息科学版). 2021(09): 1273-1283+1297 . 百度学术
    2. 钟光伟,符平贵,杨钢,张俊. 融合LSC和REHSM的地壳形变分析模型. 矿山测量. 2020(05): 27-30 . 百度学术
    3. 韩杰,张松林. 附加一次和二次等式约束的Partial-EIV模型及相应算法. 测绘科学技术学报. 2019(01): 17-22+27 . 百度学术
    4. 吕志鹏,隋立芬. 基于非线性高斯-赫尔默特模型的结构总体最小二乘法. 武汉大学学报(信息科学版). 2019(12): 1808-1815 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1131
  • HTML全文浏览量:  41
  • PDF下载量:  421
  • 被引次数: 7
出版历程
  • 收稿日期:  2013-12-01
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回