-
摘要: 道路选取是根据比例尺的要求,在道路网中保留相对重要道路、舍弃相对次要道路的地图综合操作。从概念层和操作层对两种不同的道路选取策略进行了比较。一种是删除后更新策略,即删除一条道路后更新其他道路的重要度;另一种是删除后不更新策略,即删除一条道路后不更新其他道路的重要度。以常用的stroke重要度排序法为道路选取方法,运用长度、连通度、接近度和中介度的加权来描述道路的重要度,采用相似性、误删率、漏删率等定量指标以及定性的目视判别评价选取结果。以深圳市1:1万道路网和1:5万道路网作为研究数据进行了实验。理论上删除后更新策略优于删除后不更新策略,然而实证表明删除后不更新策略在常用定量评价指标上优于删除后更新策略,在定性评价方面则各有优劣。Abstract: The road selection is a cartographic generalization operation to retain more important parts, or to omit the less important parts, of the linear features representing road network according to the cartographic scale requirement. Many researchers have paid much attention to the approaches to road network selection. This paper gives a comparative analysis of two selection strategies from conceptual and operational level. One strategy is to update the importance of the retained roads after eliminating one road and the other is not to update. The stroke ordering method is used as the road selection method, and length, connectivity, closeness, and betweenness are used to determine the importance of individual strokes. The selection results are evaluated by quantitative measures (including similarity, commission error and omission error), and qualitative visual inspection. The road network of Shenzhen city is used in the experiments. Theoretically, the update after dimination strategy is better than non-update strategy. Empirically, quantitative results shows that the non-update strategy is superior, while qualitative inspection shows that each strategy has its own advantages and disadvantages.
-
聚类是数据挖掘的基础技术,有广泛的应用前景[1-2]。聚类算法主要分为层次聚类法、网格聚类法、分割聚类法和密度聚类法[3]。其中,分割聚类法简单、快速,广泛应用于各个领域,典型的分割聚类法是K-means算法和K-medoids算法。在实际应用中,这两种算法由于需要用户输入聚类个数,聚类结果与初始点选择有关等缺点,不能很好地满足用户的需要[4]。《Science》中提出的峰值密度聚类算法虽然解决了上述问题,但存在阈值需要人为输入的问题[5]。
本文根据数据场,提出了数据质量聚类中心的概念。数据场将物质粒子间的相互作用及场描述方法引入到抽象的数域空间,实现数据对象或者样本点间相互作用的形式化描述[6]和计算。数据场将数据所具有的固有属性定义为数据的质量,并根据实际挖掘视角的不同,表示数据不同的属性。本文中,数据质量将代表数据的密集程度,并以此确定聚类中心,该方法无需用户输入聚类个数,也无需选择初始点,更无需人为设定阈值。
1 数据质量聚类
在物理场中,物体的质量是不能改变的,是物体固有的属性。同理,在数据场中,数据的质量也代表了每个数据自身的固有属性。所不同的是,在数据场中,数据并不是实际存在的物体,可以这样认为,n维数据集构成了一个n维的数据空间,数据集中每一个数据就是存在于这个n维空间中的“物体”,其各种属性都遵从于这个n维空间自身的特点。
定义:设数据集α含有N个数据点,α ={x1, x2…xn},其中xi={xi1, xi2…xip},组成一个P维空间Ω,在空间Ω中的数据点xi所固有的属性τ,称之为点xi在数据集α中的数据质量。
需要注意的是,定义中数据质量代表的是数据在数据集中的固有属性,这个固有属性会随着数据挖掘视角的不同而改变。一个数据点在数据集中可能会具有多种不同的固有属性,应当根据当前的挖掘任务赋予数据相应的属性。因此,数据场中数据质量具有集群性,即只在数据集中具有质量;空间唯一性,即相关的属性只在对应的数据集中存在;可变性,即根据需求不同代表的数据属性也不同。
聚类算法的目的是让类内相似度最高,类间相似度最低。反映在数据集的空间分布上,就是相似度高的数据分布在同一个类簇中,不同的类簇代表了不同的类别。因此,在聚类分析中,一般取数据密集程度这一属性作为数据的质量。此时,数据场中的数据质量本质上是反映数据集中数据的密集程度,处于密集区域的数据具有较大的数据质量,处于稀疏区域的数据具有较小的数据质量。
图 1所示的红色点标出的是数据集中质量较大的点,与所描述的数据质量概念一致,这些点都处于数据集中的密集区域。在聚类分析中,处于密集区域的点都有可能成为聚类中心。图 1中所示的数据集含有5 000个点,而质量较大的点约有1 000个,显然,只根据数据的质量不能确定数据集的聚类中心。
类比于物理场中的引力,聚类中心应当具有较大的质量,能够吸引其他质量较小的点在其周围形成一个类簇。同时,各个聚类中心应当相距较远,从而使聚类中心之间的作用力很小,直至可以忽略,这样,类簇与类簇间的相互关系就很弱,而类簇内的相互关系就很强,满足了最基本的聚类思想。
因此,数据质量聚类算法使用数据质量和数据之间的距离两个属性共同确定一个聚类中心。其中,数据之间的距离属性定义为:在数据集{x1, x2…xn}中,所有比xi质量大的点到xi距离的最小值;如果点xi是数据集中质量最大的点,那么其距离属性就为数据集中其他点xj(j≠i)到xi距离的最大值。
数据距离属性的计算式为:
$$ {{\delta }_{i}}=\left\{ \begin{align} &\underset{j:{{m}_{j}}>{{m}_{i}}}{\mathop{\min }}\, ({{d}_{ij}}), \ \ \exists \ {{m}_{i}}<{{m}_{j}} \\ &\underset{j=1, 2, \cdots , n}{\mathop{\max }}\, ({{d}_{ij}}), \ \ \nexists \ {{m}_{i}}<{{m}_{j}} \\ \end{align} \right. $$ (1) 式中,m表示数据的质量,dij表示两点间的距离。当数据集x1, x2…xn中存在比xi数据质量大的点xj,即mi<mj时,数据之间的距离为所有比xi质量大的点到xi距离的最小值;如果不存在比xi数据质量大的点xj,即xi是数据集中质量最大的点,那么其距离属性就为数据集中其他点xj(j≠i)到xi距离的最大值。所以点xi的mi和δi都较大时,可以确定是聚类中心。在实际操作中,为了便于准确找到数据集中同时具有较大数据质量和较大距离属性的点,用数据集中每个数据点的质量属性作为横坐标、距离属性作为纵坐标绘制的决策图来确定聚类中心。在决策图中,同时具有较大横坐标和纵坐标数值的点会脱离其他只具有1个较大属性的点或者不具有较大属性的点,从而可以将这些脱离出来的点作为聚类中心。
图 2所示为数据集的决策图,可以发现,只有少数几个点的两个属性都较大,这些点用红色标出,作为备选聚类中心。
2 数据质量聚类算法实验验证
2.1 实验数据
数据质量聚类算法的核心是确定聚类中心,涉及数据的质量和距离两个属性。其中,距离属性计算使用欧氏距离,质量的计算采用参考文献[7]中的方法。在确定聚类中心后,先进行数据类别的划分,即将剩余点划入与其最近的聚类中心,形成一个个类簇,然后根据用户需要输出聚类结果。算法流程如图 3所示。
通过一系列的对比实验验证数据质量聚类算法的聚类效果,并与传统的K-means算法、K-medoids算法和文献[1]中的峰值密度聚类算法进行了对比。
在对比实验中,采用7个数据集进行实验。数据集A1、A2、A3分别含有3 000个点和20个类簇、5 250个点和35个类簇、7 500个点和50个类簇,并且3个数据集中类簇内点的个数均为150个。数据集S1、S2、S3、S4都含有5 000个点和15个类簇,但是每个数据集中类簇的扩展程度不一样,而且4个数据集中每个类簇的中心是已知的[8]。这7个数据集的二维可视图如图 4和图 5所示,图 4和图 5中的横、纵坐标分别为数据集二维可视图的X轴和Y轴。
2.2 对比实验
首先对数据集A1, A2, A3分别使用数据质量聚类算法和K-means算法、K-medoids算法和峰值密度聚类算法进行聚类。将得到的聚类结果进行二维可视化展示,同时,对每个数据集中聚类结果进行统计,记录每种算法在每个类簇中聚集的点个数,与数据集实际每个类簇中应有点的个数进行对比,计算出准确率。
因K-means算法和K-medoids算法需要输入聚类个数,故按照数据集实际情况输入。数据质量聚类算法使用决策图确定聚类中心,如图 6所示为数据集A1、A2和A3通过决策图选出的聚类中心。图 6中彩色点为聚类中心,即横坐标和纵坐标都较大的点。所选出的聚类中心个数在数据集A1中为20,在A2中为35,在A3中为50,这与数据集原有的类簇个数相同。
图 7是4种聚类算法的结果图,从图 7中可以发现,数据质量聚类算法和峰值密度聚类算法都有较好的聚类效果。对于聚类算法的准确率统计每一个数据集中4种算法对每一个类簇聚类的准确率,即类簇内点的个数和实际每个类内点的个数比值。统计结果如表 1所示。
表 1 数据集A1、A2、A3实验平均准确率统计表/%Table 1. Clustering Accuracies of Datasets A1, A2, A3/%数据集 K-means
算法K-medoids
算法峰值密度
聚类数据质量
聚类A1 86.87 70.33 95.33 96.00 A2 76.84 79.73 96.65 96.91 A3 79.81 61.17 96.17 97.49 从表 1的统计结果中可以发现,数据质量的聚类算法具有最高的平均准确率,相比于传统的K-mean算法和K-medoids算法分割聚类算法,在准确率上提高了很多,同时,与最新的峰值密度聚类算法相比,准确率也有所提高。
在数据集S1、S2、S3、S4中,每个类簇的中心是已知的,通过比较4种算法得到的聚类中心与实际中心的偏差量,对比每种算法确定聚类中心的效果。使用决策图确定数据质量聚类算法的聚类中心。K-means算法与K-medoids算法依然输入真实的类簇个数,4种算法聚类结果二维可视图如图 8所示。
在图 8中,数据质量聚类算法和峰值密度聚类算法的聚类效果直观上要优于K-means算法和K-medoids算法。在对比聚类效果后,统计4种聚类算法所确定的聚类中心与实际中心位置的误差率。具体计算式为:
$$ {{\gamma }_{i}}=\frac{1}{2}(\frac{{{x}_{i}}-{{a}_{i}}}{{{a}_{i}}}+\frac{{{y}_{i}}-{{b}_{i}}}{{{b}_{i}}}) $$ (2) 式中,xi和yi为实验中得到的聚类中心的坐标;ai和bi为数据集类簇实际的坐标。γi值越小,说明越接近实际的类簇中心。每个数据集中的平均误差率统计结果如表 2所示。
表 2 数据集S1、S2、S3、S4聚类中心平均误差率统计/%Table 2. Error Rate of Clustering Centers for Datasets S1, S2, S3, S4/%数据集 K-means
算法K-medoids
算法峰值密度
聚类数据质量
聚类S1 0.37 0.49 2.81 0.14 S2 0.53 0.74 0.31 0.11 S3 0.98 1.55 0.66 0.15 S4 1.39 1.71 0.46 0.14 从表 2中可以看出,数据质量聚类算法所确定的聚类中心与实际聚类中心的误差率最小,几乎与实际中心重合,明显优于K-means算法、K-medoids算法和峰值密度聚类算法。
综合数据集A1、A2、A3和数据集S1、S2、S3、S4的实验结果,可以认为数据质量聚类算法比传统的分割聚类算法和峰值密度聚类算法有更好的聚类效果。
2.3 实验结果分析
上述实验结果说明,数据质量聚类算法不仅可以准确提取出聚类中心的个数,而且在剩余点的划分上也有很高的准确率,对于数据集A1、A2、A3平均准确率分别达到了96.00%、96.91%和97.49%。在确定聚类中心上,本文方法也有很高的准确率,对于数据集S1、S2、S3、S4,聚类中心的平均误差率分别为0.14%、0.11%、0.15%和0.14%。数据质量聚类算法不仅在各项指标上明显优于传统的K-means算法和K-medoids算法,而且优于峰值密度聚类算法。
对于数据集A1、A2、A3,数据质量聚类算法比峰值密度聚类算法在平均准确率上分别提高了0.67、0.26和1.32个百分点,而对于数据集S1、S2、S3、S4,聚类中心的平均误差率分别降低了20.07、2.82、4.40和3.29倍。综合以上实验结果,可以证明数据质量聚类算法能够准确确定聚类中心,并能够得到准确的聚类结果。
3 结语
传统的中心聚类算法虽然简单快速,但是需要用户输入较多参数,并且具有球形偏差,在实际应用中有较多限制。本文提出了数据质量的概念,即代表了数据场中数据的固有属性,并且根据挖掘视角的不同,数据质量所代表的属性也不同。在本文中,赋予数据质量数据密集程度的属性,结合物理场中引力的概念,提出一种确定聚类中心的新方法,即具有较大质量和较大距离属性的点可以视为聚类中心。本文方法解决了需要用户输入参数、聚类结果受初始点影响等问题,减少了中心聚类算法在实际应用中的限制。实验结果证明,数据质量聚类算法能够准确找到数据集的聚类中心,并具有较为准确的聚类结果。
数据质量聚类算法虽然较为准确,但在实际应用中需要提高算法的效率,可以采取分布式计算的方式,这将是下一步研究的方向。
-
表 1 道路描述参量
Table 1 Measures for Individual Roads Existed in Literature
文献 参量 针对对象 文献[8] 连通度、控制值、深度值、集成度 通视线 文献[3] 等级、长度、蜿蜒度 道路段 文献[17] 长度、旅行时间 道路段 文献[12] 类型、长度 stroke 文献[4] 类型、长度 stroke 文献[21] 类型、长度、宽度、车道数、交通方式、连通度 道路段 文献[9] 连通度、中介度、接近度 名字相同道路 文献[10] 等级、长度、限速、连通度、中介度、接近度、车道数 名字相同道路 文献[13] 长度、连通比率、长度比率 stroke 文献[18] 等级、长度 道路 文献[14] 中介度 stroke 文献[6] 等级、连通度、长度 stroke、道路段 文献[11] 长度、等级、Voronoi密度 stroke 文献[7] 连通度、中介度、接近度、长度、密度、交通流量 stroke 文献[22] 等级、长度、连通度、中介度、接近度 stroke 文献[15] 长度、连通度、中介度、接近度 stroke 文献[16] 路径中心度、连接度、长度 stroke 表 2 参量的含义与计算方法
Table 2 Meaning and Calculation of Measures
参量名称 意义 计算方法 长度(Length) 该stroke的几何长度 连通度(Degree) 与该stroke相交的其他stroke的数量 $D\left( {{v_i}} \right) = \sum\limits_{k = 1}^n {{r_{ik}}} $, 其中rik为边的邻接矩阵第i行第k列的元素。 接近度(Closeness) 该stroke到所有其他stroke的最少连接数量,反映了其他stroke聚集于该stroke的可能性 $C\left( {{v_i}} \right) = \frac{{n - 1}}{{\sum\limits_{k = 1}^n {d\left( {{v_i}, {v_k}} \right)} }}$,其中d(vi, vk)表示节点vi和vk的最短距离。 中介度(Betweenness) 度量了该stroke处于其他stroke之间的程度,度量stroke是否起“桥梁”作用 $B = \left( {{v_i}} \right) = \frac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}}\sum\limits_{j, k \in n;j \ne k;k \ne i\;j \ne k;k \ne i}^{} {\frac{{{m_{jk}}\left( {{v_i}} \right)}}{{{m_{jk}}}}} $,其中,mjk表示节点vj和vk间最短路径的数量;mjk(vi)表示节点vj和vk间最短路径中经过节点vi的数量。 表 3 两种策略在关键点处的定量评价指标
Table 3 Quantitative Evaluation Measures at Several Critical Points
关键点 删除后更新 关键点 删除后不更新 相似性 漏删率 误删率 相似性 漏删率 误删率 M 0.605 1 0.229 5 0.262 8 M′ 0.622 8 0.248 2 0.291 6 N 0.600 4 0.213 4 0.283 8 N′ 0.603 4 0.209 0 0.281 2 L 0.592 6 0.253 5 0.256 8 L′ 0.620 0 0.220 7 0.235 2 S 0.597 4 0.210 9 0.289 0 S′ 0.605 5 0.218 8 0.270 7 -
[1] BjØrke J T. Generalization of Road Network for Mobile Map Service: An Information Theoretic Approach[C]. Proceedings of 21st International Cartographic Conference, Durban, South Africa, 2003 https://www.researchgate.net/publication/229012666_Generalization_of_road_networks_for_mobile_map_services_an_information_theoretic_approach
[2] 何宗宜.地图数据处理模型的原理与方法[M].武汉:武汉大学出版社, 2004 He Zongyi. Elements and Methods of Model for Cartographical Data Processsing[M]. Wuhan:Wuhan University Press, 2004
[3] Peng Wanning, Muller J C. A Dynamic Decision Tree Structure Supporting Urban Road Network Automated Generalization[J]. The Cartographic Journal, 1996, 33(1):5-10 doi: 10.1179/caj.1996.33.1.5
[4] Edwardes A J, Mackaness W A. Intelligent Genera-lization of Urban Road Networks[C]. Proceedings of GIS Research UK Conference, New York, USA, 2000 https://www.geos.ed.ac.uk/homes/wam/EdwardesMack2000b.pdf
[5] 邓红艳, 武芳, 王辉连, 等.基于拓扑相似性的道路网综合模型[J].测绘科学技术学报, 2008, 25(3):183-187 http://d.old.wanfangdata.com.cn/Periodical/chxyxb200803008 Deng Hongyan, Wu Fang, Wang Huilian, et al. A Generalization of Road Networks Based on Topological Similarity[J]. Journal of Geomatics Science and Technology, 2008, 25(3):183-187 http://d.old.wanfangdata.com.cn/Periodical/chxyxb200803008
[6] Chen Jun, Hu Yungang, Li Zhilin, et al. Selective Omission of Road Features Based on Mesh Density for Automatic Map Generalization[J]. International Journal of Geographical Information Science, 2009, 23(8):1034-1037 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658810802070730
[7] Touya G. A Road Network Selection Process Based on Data Enrichment and Structure Detection[J]. Transactions in GIS, 2010, 14(5):595-614 doi: 10.1111/tgis.2010.14.issue-5
[8] Mackaness W A. Analysis of Urban Road Networks to Support Cartographic Generalization[J]. Cartography and Geographic Information Systems, 1995, 22(4):306-316 doi: 10.1559/152304095782540267
[9] Jiang Bin, Claramunt C. A Structural Approach to the Model Generalization of Urban Street Network[J]. GeoInformatica, 2004, 8(2):157-173 doi: 10.1023/B:GEIN.0000017746.44824.70
[10] Jiang Bin, Harrie L. Selection of Streets from a Network Using Self-Organizing Maps[J]. Transactions in GIS, 2004, 8(3):335-350 doi: 10.1111/tgis.2004.8.issue-3
[11] Liu Xingjian, Zhan Feibing, Ai Tinghua. Road Selection Based on Voronoi Diagrams and "Strokes" in Map Generalization[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12:S194-S202 doi: 10.1016/j.jag.2009.10.009
[12] Thomson R C, Richardson D E. The "Good Continuation" Principle of Perceptual Organization Applied to the Generalization of Road Networks[C]. Proceedings of 19th International Cartographic Conference, Ottawa, Canada, 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.202.4737
[13] Zhang Qingnian. Road Network Generalization Based on Connection Analysis[C]. Proceedings of 11th International Symposium on Spatial Data Handling, Leicester, UK, 2004 doi: 10.1007%2F3-540-26772-7_26
[14] Tomko M, Winter S, Claramunt C. Experiential hierarchies of Streets[J]. Computers, Environment and Urban Systems, 2008, 32(1):41-52 doi: 10.1016/j.compenvurbsys.2007.03.003
[15] Yang Bisheng, Luan Xuechen, LI Qingquan. Gene-rating Hierarchical Strokes from Urban Street Networks Based on Spatial Pattern Recognition[J]. International Journal of Geographical Information Science, 2011, 25(12):2025-2050 doi: 10.1080/13658816.2011.570270
[16] 徐柱, 刘彩凤, 张红, 等.基于路划网络功能评价的道路选取方法[J].测绘学报, 2012, 41(5):769-776 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205225894 Xu Zhu, Liu Caifeng, Zhang Hong, et al. Road Selection Based on Evaluation of Stroke Network Functionality[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):769-776 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205225894
[17] Richardson D E, Thomson R C. Integrating Thematic, Geometric, and Topologic Information in the Generalization of Road Networks[J]. Cartographica, 1996, 33(1):75-83 doi: 10.3138/F150-7678-5Q15-8N06
[18] 邓红艳, 武芳, 翟仁健, 等.基于遗传算法的道路网综合模型[J].武汉大学学报·信息科学版, 2006, 31(2):164-167 http://ch.whu.edu.cn/CN/abstract/abstract2394.shtml Deng Hongyan, Wu Fang, Zhai Renjian, et al. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2):164-167 http://ch.whu.edu.cn/CN/abstract/abstract2394.shtml
[19] Li Zhilin, Zhou Qi. Integration of Linear and Areal Hierarchies for Continuous Multi-scale Representation of Road Networks[J]. International Journal of Geographical Information Science, 2012, 26(5):855-880 doi: 10.1080/13658816.2011.616861
[20] Benz S, Weibel R. Road Network Selection for Medium Scales Using an Extended Stroke-mesh Combination Algorithm[J]. Cartography and Geographic Information Science 2014, 43(4):323-339 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/15230406.2014.928482
[21] Li Zhilin, Choi Yuenhang. Topographic Map Gene-ralization:Association of Road Elimination with Thematic Attributes[J]. The Cartographic Journal, 2002, 39(2):153-166 doi: 10.1179/caj.2002.39.2.153
[22] Zhou Qi, Li Zhilin. Evaluation of Properties to Determine the Importance of Individual Roads for Map Generalization[C]//Ruas A. Advance in Cartography and GIScience, Lecture Notes in Geoinformation and Cartography. Berlin: Springer-Verlag, 2011: 459-475 doi: 10.1007/978-3-642-19143-5_26
[23] Zhou Qi, Li Zhilin. A Comparative Study of Various Strategies to Concatenate Road Segment into Strokes for Map Generalization[J]. International Journal of Geographical Information Science, 2012, 26(4):691-715 doi: 10.1080/13658816.2011.609990
[24] 郭庆胜, 黄远林, 郑春燕, 等.空间推理与渐进式地图综合[M].武汉:武汉大学出版社, 2007 Guo Qingsheng, Huang Yuanlin, Zheng Chunyan, et al. Spatial Reasoning and Progressive Cartographic Generalization[M]. Wuhan:Wuhan University Press, 2007
[25] Jiang Bin, Zhao Sijian, Yin Junjun. Self-Organized Natural Roads for Predicting Traffic Flow:A Sensitivity Study[J]. Journal of Statistical Mechanics:Theory and Experiment, 2008:P07008 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0804.1630
[26] Stoter J, Burghardt D, Duchêne C, et al. Methodo-logy for Evaluating Automated Map Generalization in Commercial Software[J]. Computers, Environment and Urban Systems, 2009, 33(5):311-324 doi: 10.1016/j.compenvurbsys.2009.06.002
[27] Diakoulaki D, Mavrotas G, Papayannakis L. Determining Objective Weights in Multiple Criteria Problems:The CRITIC Method[J]. Computers & Operations Research, 1995, 22(7):763-770 doi: 10.1016-0305-0548(94)00059-H/
[28] 栾学晨, 杨必胜, 张云菲.城市道路复杂网络结构化等级分析[J].武汉大学学报·信息科学版, 2012, 37(6):728-732 http://ch.whu.edu.cn/CN/abstract/abstract235.shtml Luan Xuechen, Yang Bisheng, Zhang Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6):728-732 http://ch.whu.edu.cn/CN/abstract/abstract235.shtml