球面圆拟合算法及其在测月定向中的应用

詹银虎, 郑勇, 张超, 张中凯, 李铸洋, 马高峰

詹银虎, 郑勇, 张超, 张中凯, 李铸洋, 马高峰. 球面圆拟合算法及其在测月定向中的应用[J]. 武汉大学学报 ( 信息科学版), 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
引用本文: 詹银虎, 郑勇, 张超, 张中凯, 李铸洋, 马高峰. 球面圆拟合算法及其在测月定向中的应用[J]. 武汉大学学报 ( 信息科学版), 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
Citation: ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562

球面圆拟合算法及其在测月定向中的应用

基金项目: 国家自然科学基金资助项目(41374042)。
详细信息
    作者简介:

    詹银虎,博士生,主要从事天文导航技术研究。E-mail:oscardad@163.com

  • 中图分类号: P128.1

Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon

Funds: The National Natural Science Foundation of China, No. 41374042.
  • 摘要: 本文提出了一种球面圆拟合算法,解决了月球视面中心的确定问题。结合该算法,利用仿真测量数据,研究了月相及月相姿态对月球视面中心拟合精度的影响。通过观测实验验证了球面圆拟合算法的正确性,并与原有的算法进行了定向结果的比较。结果显示,球面圆拟合算法与原有算法的拟合内符合精度相当,但外部检核精度提高了大约0.5″,建议在工程实践中采用本文提出的算法进行测月定向。
    Abstract: The Moon is the brightest body in the night sky, and it is of great value to be used to determine the azimuth. However, the key problem is how to solve the center of the apparent Moon accurately. This paper puts forward a new method called spherical circle fitting algorithm to determine the center of the apparent Moon. It has such many merits as strictness, briefness and little calculation in contrast to the existing algorithm. Simulated observation data is processed to understand the relationship between the attitude of the phase of the Moon and fitting accuracy. An experiment based on real observations was used to testify the correctness of the algorithm, and a comparison is made between the spherical circle fitting algorithm and the old algorithm. The results show that while the inner precision is almost the same, the outer accuracy of our algorithm improves by 0.5″. These results suggest that spherical circle fitting algorithm is more suitable for engineering applications.
  • [1] Lambrou E, Pantazis G. Astronomical Azimuth Determination by the Hour Angle of Polaris Using Ordinary Total Stations[J]. Survey Review, 2008, 40(308): 164-172
    [2] Balodimos D D, Korakitis R, Lambrou E, et al. Fast and Accurate Determination of Astronomical Coordinates Φ, Λ and Azimuth, Using a Total Station and GPS Receiver[J]. Survey Review, 2003, 37(290): 269-275
    [3] Zhang Chao, Zheng Yong, Li Changhui. Research on Astronomy Orientation by Using the Random Star[J]. Science of Surveying and Mapping, 2005,30(4): 30-32(张超, 郑勇, 李长会. 用任意星进行天文定向的研究[J].测绘科学,2005,30(4): 30-32)
    [4] Zhan Yinhu, Zhang Chao, Hua Yuesheng, et al. Research on Fast Astro-Geodetic Orientation by Observing Planets. Journal of Geomatics Science and Technology, 2011,28(5): 338-341(詹银虎, 张超, 华跃升, 等.利用行星进行快速天文定向[J].测绘科学技术学报,2011,28(5):338-341)
    [5] Zhan Yinhu. Theory and Technology Research on Fast Orientation Based on Celestial Bodies[D]. Zhengzhou: Information Engineering University, 2012 (詹银虎.基于自然天体的快速定向理论及技术研究[D]. 郑州:信息工程大学,2012)
    [6] Zhan Yinhu, Zhang Chao, Zheng Yong, et al. A Fitting Algorithm of the Apparent Moon Center and Its' Application on Fast Orientation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 353-358 (詹银虎,张超,郑勇,等.月球视面中心拟合算法及其在测月快速定向中的应用[J].测绘学报,2012,41(3):353-358)
    [7] Zhang Hanwei, Xu Houze, Wang Aisheng. The Basic Principal of Measuring Astronomical Longitude, Latitude and Azimuth Angle[J]. Science of Surveying and Mapping, 2006, 31(4): 157-160(张捍卫, 许厚泽, 王爱生. 天文经纬度和天文方位角测定的基本原理[J]. 测绘科学, 2006, 31(4): 157-160)
    [8] John B, Wendy P, Kaplan G, et al. User's Guide to NOVAS Version C3.0[R].US Naval Observatory,Washington D C, 2009
    [9] Liu Jingnan, Wei Erhu, Huang Jinsong, et al. Applications of Selenodesy to Lunar Detection[J]. Geomatics and Information Science of Wuhan Univers, 2005, 30(2): 95-100(刘经南, 魏二虎, 黄劲松, 等. 月球测绘在月球探测中的应用[J]. 武汉大学学报·信息科学版, 2005, 30(2): 95-100)
    [10] Chen Junyong. Progress in Lunar Geodesy[J].Journal of Geodesy and Geodynamics, 2004,24(3): 1-6(陈俊勇.月球大地测量学的进展[J]. 大地测量与地球动力学, 2004, 24(3): 1-6)
    [11] Li Fei, Yan Jianguo. Principle and Method of Lunar Gravity Field Determination and Project on Self-determinational Lunar Gravity Field[J]. Geomatics and Information Science of Wuhan Univers, 2007, 32(1): 6-10(李斐, 鄢建国. 月球重力场的确定及构建我国自主月球重力场模型的方案研究[J]. 武汉大学学报·信息科学版, 2007, 32(1): 6-10)
    [12] Huang Weibin. Principles and Applications of Contemporary Adjustment[M]. Beijing: People's Liberation Army Press, 1992(黄维彬. 近代平差理论及其应用[M]. 北京: 解放军出版社, 1992)
    [13] Gander W, Golub G H, Strebel R. Least-Square Fitting of Circles and Ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558-578
    [14] Sung J A, Wolfgang R, Hans J W. Least-Squares Orthogonal Distances Fitting of Circle,Sphere,Ellipse,Hyperbola and Parabola[J].Pattern Recognition, 2001, 34: 2 283-2 303
    [15] Xia Yifei, Huang Tianyi. Spherical Astronomy[M]. Nanjing: Nanjing University Press, 1995(夏一飞, 黄天衣. 球面天文学 [M]. 南京: 南京大学出版社, 1995)
    [16] Zhang Chao. System-level Development and Application Research on Astronomic Surveying System Based on Electronic Theodolites[D]Zhengzhou: Information Engineering University, 2009(张超. 基于电子经纬仪的天文测量系统及应用研究[D]. 郑州: 信息工程大学, 2009)
    [17] Hansen P C.Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems[J]. Numerical Algorithn, 1994, 6: 1-35
    [18] Hansen P C. Analysis of the Discrete Ill-posed Problems by Means of the L-curves[J].SIAM Review, 1992, 34: 561-580
    [19] State Bureau of Technology and Quality Supervision. GB/T 17943-2000 Specifications for the Geodetic Astronomy[S]. Beijing: Standards Press of China, 2000(国家质量技术监督局. GB/T 17943-2000大地天文测量规范[S]. 北京: 中国标准出版社, 2000)
  • 期刊类型引用(15)

    1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 . 百度学术
    2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 . 百度学术
    3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 . 百度学术
    4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 . 百度学术
    5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 . 百度学术
    6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 . 百度学术
    7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 . 百度学术
    8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 . 百度学术
    9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 . 百度学术
    10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 . 百度学术
    11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 . 百度学术
    12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 . 百度学术
    13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 . 百度学术
    14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 . 百度学术
    15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1383
  • HTML全文浏览量:  79
  • PDF下载量:  459
  • 被引次数: 35
出版历程
  • 收稿日期:  2014-04-25
  • 发布日期:  2015-11-04

目录

    /

    返回文章
    返回