联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程

方楠, 孙凯, 黄传超, 柏承元, 陈志丹, 谢磊, 杨知, 徐英辉, 解鸿斌, 冯光财, 李志伟, 许文斌

方楠, 孙凯, 黄传超, 柏承元, 陈志丹, 谢磊, 杨知, 徐英辉, 解鸿斌, 冯光财, 李志伟, 许文斌. 联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036
引用本文: 方楠, 孙凯, 黄传超, 柏承元, 陈志丹, 谢磊, 杨知, 徐英辉, 解鸿斌, 冯光财, 李志伟, 许文斌. 联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036
FANG Nan, SUN Kai, HUANG Chuanchao, BAI Chengyuan, CHEN Zhidan, XIE Lei, YANG Zhi, XU Yinghui, XIE Hongbin, FENG Guangcai, LI Zhiwei, XU Wenbin. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036
Citation: FANG Nan, SUN Kai, HUANG Chuanchao, BAI Chengyuan, CHEN Zhidan, XIE Lei, YANG Zhi, XU Yinghui, XIE Hongbin, FENG Guangcai, LI Zhiwei, XU Wenbin. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036

联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程

基金项目: 

国家重点研发计划课题 2022YFB3903602

国家自然科学基金项目 42388102

国家自然科学基金项目 42174023

国家自然科学基金项目 42304037

中南大学前沿交叉研究项目 2023QYJC006

湖南省自然科学基金重点项目 2024JJ3031

中南大学研究生自主探索创新项目 2021zzts0249

湖南省研究生科研创新项目 CX20210104

详细信息
    作者简介:

    方楠,博士生,主要从事大地测量资料和地震波的联合反演研究。fangnan@csu.edu.cn

    通讯作者:

    许文斌,博士,教授。wenbin.xu@csu.edu.cn

Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake

  • 摘要:

    2023-12-18,甘肃省临夏回族自治州积石山县发生了Ms 6.2地震,该地震发生在祁连山内部的次级断裂拉脊山断裂上,该断裂活动强度较低、发震频率不高,本次地震为人们重新认识祁连山内部这一特殊构造提供了机会。利用Sentinel-1A卫星的升、降轨数据获得了本次地震的同震地表形变,采用贝叶斯反演方法确定了发震断层的几何参数,联合地震波数据反演了该地震的动态滑动分布。本次地震的发震断层朝北东倾,倾角为32.2°,走向为~325.2°,滑动角为~112°,发震断层呈现逆冲兼具右旋走滑分量的运动性质。结合邻区主要活动断裂的断层几何和运动学特征,认为本次积石山地震发生在拉脊山南缘北东倾的断层上。本次积石山地震所在的拉脊山断裂东段可能是青海南山断裂、拉脊山断裂西段和西秦岭断裂的阶区转换构造,该阶区的左行右阶型挤压作用为本次逆冲型地震事件的驱动机制。

    Abstract:
    Objectives 

    On December 18, 2023, an Ms 6.2 earthquake occurred in Jishishan County, Gansu Province, China. This event occurred on the Lajishan fault, a secondary fault with low activity and infrequent seismicity in the Qilian Mountains, which event provides an opportunity to study this special structure within the Qilian Mountains.

    Methods 

    We derived the coseismic deformation field using both ascen⁃ding and descending Sentinel-1A data, applied the Bayesian inversion method to determine the source parameters of the seismogenic fault, and combined seismic wave records with interferometric synthetic aperture radar data to model the dynamic slip distribution of this event.

    Results 

    The event has a northwest-dipping fault with a dip of 32.2°,a strike of 325.2° and a rake of 112°,indicating that this earthquake is a thrust event with a dextral slip component.

    Conclusions 

    By analyzing the fault geometry and kinematic characteristics of the primary active faults in the surrounding region, we found that the Jishishan earthquake occurred on the southern edge of the Laji Mountain. This study concludes that the Jishishan earthquake occurred on a northeast-dipping fault at the southern margin of the Laji Mountains. It also suggests that the eastern section of the Laji Mountain fault, where the Jishishan earthquake occurred, may be a step-over structure between the Qinghai Nanshan fault, the western section of the Laji Mountain fault, and the west Qinling fault. Additionally, it proposes that the left-running, right-step-type extrusion of the step-over zone is the driving mechanism of this retrograde seismic event.

  • 感谢中国地震局地球物理研究所房立华研究员提供的余震精定位数据,欧洲航天局提供的哨兵1A数据(https://asf.alaska.edu/),IRIS数据管理机构提供的远震数据,长安大学李振洪教授提供的滑坡点位数据,活动断裂数据来自www.activefault⁃datacenter.cn/map;本文中大部分图采用GMT绘制[49]。
    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240036
  • 图  1   青藏高原东北缘构造背景及积石山地震附近区域构造图

    Figure  1.   Tectonic Setting of the Northeastern Tibetan Plateau and the Jishishan Earthquake

    图  2   断层几何参数联合概率密度分布图

    Figure  2.   Joint Probability Density Distribution of Fault Geometric Parameters

    图  3   同震滑动分布模型

    Figure  3.   Coseismic Slip Distributed Model

    图  4   滑动分布反演观测值、模型值及残差值

    Figure  4.   Coseismic Observation, Model and Residuals of Inversion of Slip Distribution

    图  5   断层面动态破裂图

    Figure  5.   Dynamic Rupture Process on the Fault

    图  6   PGA图和PGV图

    Figure  6.   PGA Map and PGV Map

    表  1   不同机构和本文研究获取的2023年积石山Ms 6.2地震震源机制

    Table  1   Focal Mechanisms of the 2023 Jishishan Ms 6.2 Earthquake Published by Different Institutions and This Study

    研究来源纬度/(°N)经度/(°E)震源深度/km震级 (Mw)节面I节面Ⅱ
    走向/(°倾角/(°滑动角/(°走向/(°倾角/(°滑动角/(°
    GCMT35.83102.8118.95.9303526216446122
    USGS35.74102.83105.9433362881562893
    GFZ35.74102.81186.0133253991383879
    IG⁃CEA35.68102.79105.96307507115544111
    CENC35.70102.79105.9300455017057123
    本文研究35.77102.767.76.0325321121206177
    注:GCMT(Global Centroid Moment Tensor):全球矩张量;USGS(United States Geological Survey):美国地质调查局;GFZ(Helmholtz⁃Centre for Geosciences):德国地学中心;IG⁃CEA(Institute of Geology, China Earthquake Administration):中国地震局地质研究所;CENC(China Earthquake Networks Center):中国地震台网中心。
    下载: 导出CSV

    表  2   本文使用的Sentinel⁃1A影像

    Table  2   Sentinel⁃1A Images Used in This Study

    数据类型轨道号飞行方向影像对
    Sentinel⁃1A128升轨2023⁃10⁃27—2023⁃12-26
    Sentinel⁃1A135降轨2023⁃12⁃14—2023⁃12⁃26
    下载: 导出CSV

    表  3   东倾发震断层几何参数

    Table  3   Geometric Parameters of East Dipping Fault Model

    统计项长度/km宽度/km顶深/km倾角/(°)走向/(°)断层X/km断层Y/km走滑分量/m倾滑分量/m
    最优值12.967.965.5432.2325.2-6.482.870.10-0.249
    2.5%12.907.855.4831.7324.8-6.512.810.09-0.253
    97.5%13.038.095.6032.7325.5-6.452.910.11-0.244
    注:走滑分量正值代表右旋,负值代表左旋;倾滑分量正值代表正断,负值代表逆冲;断层XY表示断层上边界中点与参考点的偏离。
    下载: 导出CSV
  • [1] 王运生, 赵波, 吉锋, 等. 2023年甘肃积石山Ms 6.2地震震害异常的启示[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 1-8.

    WANG Yunsheng, ZHAO Bo, JI Feng, et al. Preliminary Insights into the Hazards Triggered by the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2024, 51(1): 1-8.

    [2] 陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版), 2024,DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024,DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [3] 倪瑞胜, 许文斌. 震形图APP: 一种基于Android系统的地震形变模拟应用程序[J]. 地球与行星物理论评, 2023, 54(6): 622-632.

    NI Ruisheng, XU Wenbin. Codefmap APP: A Seismic Deformation Simulation Application Based on Android System[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(6): 622-632.

    [4]

    LI S W, XU W B, LI Z W. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges[J]. Geodesy and Geodynamics, 2022, 13(2): 114-126.

    [5]

    LIU H Z, XIE L, ZHAO G Q, et al. A Joint InSAR-GNSS Workflow for Correction and Selection of Interferograms to Estimate High-Resolution Interseismic Deformations[J]. Satellite Navigation, 2023, 4(1): 14.

    [6] 杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501

    YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501

    [7] 刘振江, 韩炳权, 能懿菡, 等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/j.whugis20240008. doi: 10.13203/j.whugis20240008

    LIU Zhenjiang, HAN Bingquan, NAI Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20240008. doi: 10.13203/j.whugis20240008

    [8]

    TAPPONNIER P, MEYER B, AVOUAC J P, et al. Active Thrusting and Folding in the Qilian Shan, and Decoupling Between Upper Crust and Mantle in Northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97(3): 382-403.

    [9]

    YIN A, HARRISON T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.

    [10]

    WANG Q, ZHANG P Z, FREYMUELLER J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5542): 574-577.

    [11] 袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2): 270-278.

    YUAN Daoyang, ZHANG Peizhen, LIU Baichi, et al. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeas-tern Margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 2004, 78(2): 270-278.

    [12]

    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.

    [13]

    ZHENG W J, ZHANG P Z, HE W G, et al. Transformation of Displacement Between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults[J]. Tectonophysics, 2013, 584: 267-280.

    [14]

    LI Y H, LIU M, WANG Q L, et al. Present-Day Crustal Deformation and Strain Transfer in Northeas-tern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 487: 179-189.

    [15] 徐化超, 王辉, 曹建玲. 青藏高原东北缘主要断裂滑动速率及其动力学意义[J]. 地震, 2018, 38(3): 13-23.

    XU Huachao, WANG Hui, CAO Jianling. Slip Rates of the Major Faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications[J]. Earthquake, 2018, 38(3): 13-23.

    [16]

    PAN Z Y, YUN Z, SHAO Z G. Contemporary Crustal Deformation of Northeast Tibet from Geodetic Investigations and a Comparison Between the Seismic and Geodetic Moment Release Rates[J]. Physics of the Earth and Planetary Interiors, 2020, 304: 106489.

    [17]

    PAN Z Y, HE J K, SHAO Z G. Spatial Variation in the Present-Day Stress Field and Tectonic Regime of Northeast Tibet from Moment Tensor Solutions of Local Earthquake Data[J]. Geophysical Journal International, 2020, 221(1): 478-491.

    [18]

    CHEN Z D, KORONOVSKII N V, ZAITSEV V A, et al. Active Tectonic Deformation of the Qilian Shan, Northeastern Tibetan Plateau[J]. Russian Geology and Geophysics, 2024, 65(7): 779-794.

    [19]

    ZHANG P Z, SHEN Z K, WANG M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809.

    [20]

    CHEN Z D, XU W B, LIU R, et al. Tectonic Deformation of the Western Qilian Shan in Response to the North–South Crustal Shortening and Sinistral Strike-Slip of the Altyn Tagh Fault Inferred from Geomorphologic Data[J]. Frontiers in Earth Science, 2022, 10: 808935.

    [21]

    WANG E, SHI X H, WANG G, et al. Structural Control on the Topography of the Laji–Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau: Facilitation of the Headward Propagation of the Yellow River System[J]. Journal of Asian Earth Sciences, 2011, 40(4): 1002-1014.

    [22] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.

    [23] 李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.

    LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between the Ancient Earthquake of Lajishan Fault and the Catastrophic Event of Lajia Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.

    [24] 李智敏, 田勤俭, 屠泓为. 拉脊山断裂带遥感特征研究[J]. 高原地震, 2009, 21(1): 26-31.

    LI Zhimin, TIAN Qinjian, TU Hongwei. Remote Sensing Characteristics of Lajishan Fault[J]. Plateau Earthquake Research, 2009, 21(1): 26-31.

    [25] 王二七, 张旗, B.Burchfiel Clark. 青海拉鸡山: 一个多阶段抬升的构造窗[J]. 地质科学, 2000, 35(4): 493-500.

    WANG Erqi, ZHANG Qi, BURCHFIEL C B. The Lajishan Fault Belt in Qinghai Province: A Multi-staged Uplifting Structural Window[J]. Scientia Geologica Sinica, 2000, 35(4): 493-500.

    [26] 张波. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2012.

    ZHANG Bo. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji ShanFault[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2012.

    [27] 周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.

    ZHOU Lin, WANG Qingliang, LI Changjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.

    [28]

    LI X N, PIERCE I K D, BORMANN J M, et al. Tectonic Deformation of the Northeastern Tibetan Plateau and Its Surroundings Revealed with GPS Block Modeling[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB020733.

    [29]

    WALD D J, HEATON T H, HUDNUT K W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S49-S70.

    [30]

    QIAN Y Y, NI S D, WEI S J, et al. The Effects of Core-Reflected Waves on Finite Fault Inversions with Teleseismic Body Wave Data[J]. Geophysical Journal International, 2017, 211(2): 936-951.

    [31]

    LASKE G, MASTERS G, MA Z, et al. Update on CRUST1.0—A 1-Degree Global Model of Earth’s Crust[C]// EGU General Assembly, Vienna, Austria, 2013.

    [32]

    KENNETT B L N, ENGDAHL E R, BULAND R. Constraints on Seismic Velocities in the Earth from Traveltimes[J]. Geophysical Journal International, 1995, 122(1): 108-124.

    [33]

    FARR T G, ROSEN P A, CARO E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2): 2005RG000183.

    [34]

    JONSSON S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.

    [35]

    ZHU L P, RIVERA L A. A Note on the Dynamic and Static Displacements from a Point Source in Multilayered Media[J]. Geophysical Journal International, 2002, 148(3): 619-627.

    [36]

    SHEN W S, RITZWOLLER M H, KANG D, et al. A Seismic Reference Model for the Crust and Uppermost Mantle Beneath China from Surface Wave Dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.

    [37]

    BAGNARDI M, HOOPER A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.

    [38]

    SEKIGUCHI H. Fault Geometry at the Rupture Termination of the 1995 Hyogo-Ken Nanbu Earthquake[J]. Bulletin of the Seismological Society of America, 2000, 90(1): 117-133.

    [39]

    HARTZELL S H, HEATON T H. Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-1583.

    [40]

    OLSON A H, APSEL R J. Finite Faults and Inverse Theory with Applications to the 1979 Imperial Valley Earthquake[J]. The Bulletin of the Seismological Society of America, 1982, 72(6A): 1969-2001.

    [41]

    ZHENG A, YU X W, XU W B, et al. A Hybrid Source Mechanism of the 2017 Mw 6.5 Jiuzhaigou Earthquake Revealed by the Joint Inversion of Strong-Motion, Teleseismic and InSAR Data[J]. Tectonophysics, 2020, 789: 228538.

    [42] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学:地球科学, 2002, 32(12): 1020-1030.

    DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic Characteristics of Active Structures in China[J]. Science China Earth Sciences, 2002, 32(12): 1020-1030.

    [43]

    ZHENG D W, ZHANG P Z, WAN J L, et al. Late Cenozoic Deformation Subsequence in Northeastern Margin of Tibet—Detrital AFT Records from Linxia Basin[J]. Science China Earth Sciences, 2003, 46(S2): 266-275.

    [44]

    YUAN D Y, CHAMPAGNAC J D, GE W P, et al. Late Quaternary Right-Lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(9/10): 2016-2030.

    [45] 郭祥云, 蒋长胜, 韩立波, 等. 中国大陆及邻区震源机制数据集(2009—2021年)[EB/OL]. (2022-03-16) https://data.earthquake.cn.

    GUO Xiangyun, JIANG Changsheng, HAN Libo, et al. Focal Mechanism Data Set in Chinese Mainland and Its Adjacent Area(2009—2021)[EB/OL]. (2022-03-16) https://data.earthquake.cn.

    [46] 邓起东, 朱艾斓, 高翔. 再议走滑断裂与地震孕育和发生条件[J]. 地震地质, 2014, 36(3): 562-573.

    DENG Qidong, ZHU Ailan, GAO Xiang. Re-Eva-luation of Seismogenic and Occurrence Conditions of Large Earthquakes on Strike-Slip Faults[J]. Seismology and Geology, 2014, 36(3): 562-573.

    [47]

    ACOCELLA V. Volcano-Tectonic Processes[M]. Berlin: Springer International Publishing, 2021.

    [48]

    WANG Y Z, WANG M, SHEN Z K. Block-Like Versus Distributed Crustal Deformation Around the Northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017, 140: 31-47.

    [49]

    WESSEL P, LUIS J F, UIEDA L, et al. The Generic Mapping Tools Version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.

图(6)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回