-
摘要: 目前北斗广域分米级星基增强系统在钟差改正数、轨道改正数的基础上,提出了基于相位观测值的分区综合改正数,介绍了分区综合改正数的概念及单频、双频用户的使用方法与定位模型。利用中国范围不同地区的北斗观测数据和对应的分区综合改正信息,统计了单频和双频用户分区综合改正精密单点定位的精度,并对其收敛性进行了分析。通过与使用GFZ提供的北斗超快速精密星历的定位效果比较,验证了分区综合改正定位在实时定位中的优势。在此基础上进一步对中国范围内分区综合改正定位效果与分区中心距离的关系进行了分析,并对不同观测时间长度的定位效果进行比较。结果表明,经分区综合改正后的双频用户平均25 min内动态定位三维误差能收敛至0.5 m以内,收敛后的定位精度为水平0.15 m,高程0.2 m;单频用户平均20 min内动态定位三维误差能收敛至0.8 m以内,收敛后的定位精度为水平0.3 m,高程0.5 m。随着用户站距离分区中心越远,定位效果总体呈现变差的趋势。总体上,当用户在分区中心1 000 km范围内时,北斗广域分区综合改正数将能提供实时分米级定位服务。Abstract: Comprehensive zone correction is a new type of differential corrections for BeiDou wide area augmentation system. As broadcasted together with the equivalent satellite clock and orbit corrections by BDS satellites, they enable user decimeter-level real-time positioning capability using the carrier-phase observations. In this paper, we give a brief introduction of comprehensive zone corrections, and the function model of precise point positioning (PPP) for dual-and single-frequency users using the comprehensive zone corrections. Tracking data of 30 stations in mainland China are used to evaluate the PPP performance, including convergence time, positioning accuracy and its relation with the user's distance from the zone center. Results show that the dual-frequency PPP convergences to 0.5 m in 25 minutes and the positioning accuracy are 0.15 m in horizontal and 0.2 m in vertical, respectively. As for single frequency PPP, the positioning accuracy convergences to 0.8 m in 20 minutes, while the positioning accuracy is 0.3 m in horizontal and 0.5 m in vertical. We conclude that the BDS PPP accuracy using the broadcasted wide area differential corrections reaches decimeter level within the distance of 1 000 km around zone center, and the accuracy becomes slightly worse with the user's distance from the zone center increasing.
-
-
表 1 分区综合改正精密单点定位处理策略
Table 1 Settings for Zone-Divided PPP
估计方法 卡尔曼滤波 卫星轨道和钟差 广播星历 广域差分改正信息 等效钟差,轨道改正,分区综合改正 数据采样率/s 30 卫星截止高度角/(°) 10 电离层误差 双频:无电离层组合单频:北斗广播星历改正模型 对流层误差 GPT2w+SAAS+VMF1 固体潮、海潮 IERS协议 测站坐标 估计,先验约束10 000 m 测站钟差 估计,先验约束0.001 s 模糊度 估计 表 2 不同频点、不同模式下分区综合改正定位RMS/m
Table 2 RMS of Zone-Divided PPP Results for Different Modes/m
频点 静态 动态 平面 高程 平面 高程 B1B2 0.07 0.13 0.11 0.18 B1B3 0.10 0.15 0.14 0.19 B1 0.13 0.36 0.22 0.43 B2 0.14 0.41 0.23 0.43 B3 0.16 0.45 0.27 0.46 -
[1] Zhou Shanshi, Hu Xiaogong, Wu Bin, et al. Orbit Determination and Time Synchronization for a GEO/IGSO Satellite Navigation Constellation with Regional Tracking Network[J]. Sci China-Phys Mech Astron, 2011, 54(6):1089-1097 doi: 10.1007/s11433-011-4342-9
[2] Zhou Shanshi, Cao Yueling, Zhou Jianhua, et al. Positioning Accuracy Assessment for the 4GEO/5IGSO/2MEO Constellation of COMPASS[J]. Sci China-Phys Mech Astron, 2012, 55(12):2290-2299 doi: 10.1007/s11433-012-4942-z
[3] Tang Chengpan, Hu Xiaogong, Zhou Shanshi, et al. Improvement of Orbit Determination Accuracy for BeiDou Navigation Satellite System with Two-Way Satellite Time Frequency Transfer[J]. Advance in Space Research, 2016, 58(7):1390-1400 doi: 10.1016/j.asr.2016.06.007
[4] He Feng, Zhou Shanshi, Hu Xiaogong, et al. Sate-llite-Station Time Synchronization Information Based Real-Time Orbit Error Monitoring and Correction of Navigation Satellite in BeiDou System[J]. Sci China-Phys Mech Astron, 2014, 57(7):1395-1403 doi: 10.1007/s11433-014-5412-6
[5] Yang Yuanxi, Li Jinlong, Xu Junyi, et al. Contribution of the COMPASS Satellite Navigation System to Global PNT Users[J]. Science Bulletin, 2011, 56(26):2813-2819 doi: 10.1007/s11434-011-4627-4
[6] Wu Xiaoli, Zhou Jianhua, Wang Gang, et al. Multipath Error Detection and Correction for GEO/IGSO Satellites[J]. Sci China-Phys Mech Astron, 2012, 55(7):1297-1306 doi: 10.1007/s11433-012-4741-6
[7] Cao Yueling, Hu Xiaogong, Wu Bin, et al. The Wide -Area Difference System for the Regional Satellite Navigation System of COMPASS[J]. Sci China-Phys Mech Astron, 2012, 55(7):1307-1315 doi: 10.1007/s11433-012-4746-1
[8] Chen Junping, Zhang Yize, Yang Sainan, et al. A New Approach for Satellite Based GNSS Augmentation System: From Sub-meter to Better than 0.2 Meter Era[C]. Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, Hawaii, 2015
[9] 李浩军, 朱卫东.北斗导航系统卫星频间钟差偏差[J].测绘学报, 2014, 43(11):1127-1131 Li Haojun, Zhu Weidong. Inter Frequency Clock Bias of BeiDou[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11):1127-1131
[10] China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal (Version 2.)[OL].http://www.wendangku.net/doc/oobc206125c52cc58bd6becf.html, 2013
[11] Wu Xiaoli, Hu Xiaogong, Wang Gang, et al. Evaluation of COMPASS Ionospheric Model in GNSS Positioning[J]. Advance in Space Research, 2013, 51(6):959-968 doi: 10.1016/j.asr.2012.09.039
[12] Wu Xiaoli, Zhou Jianhua, Tang Bo, et al. Evaluation of COMPASS Ionospheric Grid[J]. GPS Solutions, 2014, 18(4):639-649 doi: 10.1007/s10291-014-0394-4
[13] Gao Yang, Shen Xiaobing. A New Method of Carrier Phase Based Precise Point Positioning[J]. Journal of Navigation, 2002, 49(2):109-116 doi: 10.1002/navi.2002.49.issue-2
[14] Yang Yuanxi, Li Jinlong, Wang Aibing, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System[J]. Science China-Earth Sciences, 2014, 57(1):144-152 doi: 10.1007/s11430-013-4769-0
[15] Montenbruck O, Steigenberger P, Khachikyan R, et al. IGS-MGEX: Preparing the Ground for the Multi-Constellation GNSS Science[C]. 4th International Colloquium on Scientific and Fundamental Aspects of the Galileo System, Prague, CZ, 2013
[16] Deng Zhiguo, Mathias F, Uhlemann M, et al. Reprocessing of GFZ Multi-GNSS Product GBM[C]. IGS workshop, Sydney, Australia, 2016