利用双天线商用WiFi信道状态信息估计到达角

柳景斌, 黄百川, 张斌, 黎蕾蕾, 杨帆, 张振兵, 李正, 童鹏飞

柳景斌, 黄百川, 张斌, 黎蕾蕾, 杨帆, 张振兵, 李正, 童鹏飞. 利用双天线商用WiFi信道状态信息估计到达角[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178
引用本文: 柳景斌, 黄百川, 张斌, 黎蕾蕾, 杨帆, 张振兵, 李正, 童鹏飞. 利用双天线商用WiFi信道状态信息估计到达角[J]. 武汉大学学报 ( 信息科学版), 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178
LIU Jingbin, HUANG Baichuan, ZHANG Bin, LI Leilei, YANG Fan, ZHANG Zhenbing, LI Zheng, TONG Pengfei. AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178
Citation: LIU Jingbin, HUANG Baichuan, ZHANG Bin, LI Leilei, YANG Fan, ZHANG Zhenbing, LI Zheng, TONG Pengfei. AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172. DOI: 10.13203/j.whugis20180178

利用双天线商用WiFi信道状态信息估计到达角

基金项目: 

国家重点研究发展计划 2016YFB0502204

国家自然科学基金 41874031

湖北省技术创新项目 2018AAA070

湖北省自然科学基金 2018CFA007

详细信息
    作者简介:

    柳景斌, 博士, 教授, 主要从事室内和室外定位、智能手机导航、室内移动测绘和GNSS/INS/SLAM集成技术研究。jingbin.liu@whu.edu.cn

  • 中图分类号: P228

AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna

Funds: 

The National Key Research and Development Program of China 2016YFB0502204

the National Natural Science Foundation of China 41874031

the Technology Innovation Program of Hubei Province 2018AAA070

the Natural Science Foundation of Hubei Province 2018CFA007

More Information
    Author Bio:

    LIU Jingbin, PhD, professor, specializes in indoor and outdoor positioning, smartphone navigation, indoor mobile mapping, and GNSS/INS/SLAM integration technology. E-mail:jingbin.liu@whu.edu.cn

  • 摘要: 商用WiFi接收模块可以提供比接收无线信号强度指示(received signal strength indication,RSSI)更细粒的信道状态信息(channel state information,CSI),利用3根天线获取CSI进行方位到达角(angle of arrival,AOA)估计已成为现实。利用正交频分复用技术(orthogonal frequency division multiplexing,OFDM)将2根天线拓展为60个虚拟天线阵,将前向平滑算法拓展到二维前向平滑算法。利用仿真的非相干信号源和相干信号源数据进行实验,结果表明,在只利用2根接收天线的前提下也能实现基于商用WiFi信号的方位角的AOA估计,所提出的2根天线的虚拟天线阵模型和二维前向平滑算法具有有效性和适用性。
    Abstract: The off-the-shelf WiFi network interface card(NIC) can provide channel state information(CSI) which has more detailed information than received signal strength indication(RSSI). Using three antennas to obtain channel state information of WiFi to estimate yaw angle of arrive(AOA) has become reality. Based on orthogonal frequency division multiplexing (OFDM) technology, this paper uses two antennas instead of three antennas to create a virtual antenna array with 60 antennas instead of 90 antennas and extends the forward smoothing algorithm to the two-dimensional forward smoothing algorithm, then uses experimental data of non-coherent signal and coherent signal in view of multiple signal classification(MUSIC) to verify the algorithm proposed, which can realize yaw angle of arrive estimation just with two antennas instead of three antennas. The virtual antenna array model and two-dimensional forward smoothing algorithm with two antennas proposed in this paper have validity and applicability.
  • 图  1   MUSIC算法原理示意图

    Figure  1.   Diagram of MUSIC Algorithm

    图  2   二维前向平滑示意图

    Figure  2.   Two-Dimensional Forward Smoothing

    图  3   非相干信号仿真结果

    Figure  3.   Results for the Incoherent Signals

    图  4   不完全相干信号非平滑仿真结果

    Figure  4.   Results for Partially Coherent Signals Without Smooth Algorithm

    图  5   不完全相干信号平滑仿真结果

    Figure  5.   Results for Partially Coherent Signals with Smooth Algorithm

    图  6   完全相干信号非平滑仿真结果

    Figure  6.   Results for All Coherent Signals Without Smooth Algorithm

    图  7   完全相干信号平滑仿真结果

    Figure  7.   Results for All Coherent Signals with Smooth Algorithm

    表  1   不同根数天线仿真耗时

    Table  1   Simulation Time of Different Antennas

    天线根数信号源1信号源2信号源3运行时间/s
    170 ns18 ns52 ns1.295
    2-40°, 73 ns-10°, 18 ns-30°, 50 ns2.190
    3-40°, 73 ns-10°, 18 ns-30°, 50 ns3.311
    4-40°, 73 ns-10°, 18 ns-30°, 50 ns5.092
    5-40°, 73 ns-10°, 18 ns-30°, 50 ns7.541
    6-40°, 73 ns-10°, 18 ns-30°, 50 ns10.917
    下载: 导出CSV
  • [1]

    Pei L, Chen R, Liu J, et al. Using Inquiry-Based Bluetooth RSSI Probability Distributions for Indoor Positioning[J]. Journal of Global Positioning Systems, 2010, 9(2):122-130 http://ieeexplore.ieee.org/document/5502761/

    [2]

    Yang Z, Zhou Z, Liu Y. From RSSI to CSI:Indoor Localization Via Channel Response[J].ACM Computing Surveys, 2013, 46(2):1-32 http://dl.acm.org/citation.cfm?id=2543592

    [3]

    Zhou M, Zhang Q, Xu K, et al. PRIMAL:Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength[J]. Sensors, 2015, 15(10):24791-24817 doi: 10.3390/s151024791

    [4] 陈锐志, 陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报, 2017, 46(10):1316-1326 doi: 10.11947/j.AGCS.2017.20170383

    Chen Ruizhi, Chen Liang. Indoor Positioning with Smartphones:The State-of-Art and the Challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326 doi: 10.11947/j.AGCS.2017.20170383

    [5] 李桢, 黄劲松.基于RSSI抗差滤波的WiFi定位[J].武汉大学学报·信息科学版, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/abstract/abstract4576.shtml

    Li Zhen, Huang Jingsong. WiFi Positioning Using Robust Filtering with RSSI[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/abstract/abstract4576.shtml

    [6] 胡安冬, 王坚, 汪云甲, 等.利用渐消自适应EKF算法进行PDR-WiFi融合定位[J].武汉大学学报·信息科学版, 2016, 41(11):1556-1562 http://ch.whu.edu.cn/CN/abstract/abstract5605.shtml

    Hu Andong, Wang Jian, Wang Yunjia, et al. A Fusion Positioning for PDR and WiFi Based on Fading Adaptive Weighted EKF[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11):1556-1562 http://ch.whu.edu.cn/CN/abstract/abstract5605.shtml

    [7]

    Kotaru M, Joshi K, Bharadia D, et al. SpotFi:Decimeter Level Localization Using WiFi[J]. ACM Sigcomm Computer Communication Review, 2015, 45(4):269-282 http://dl.acm.org/citation.cfm?id=2787487

    [8]

    Tian Z, Li Z, Zhou M, et al. PILA:Sub-meter Localization Using CSI from Commodity WiFi Devices[J]. Sensors, 2016, 16(10):1664-1684 doi: 10.3390/s16101664

    [9]

    Qian K, Wu C, Yang Z, et al. Enabling Contactless Detection of Moving Humans with Dynamic Speeds Using CSI[J]. ACM Transactions on Embedded Computing Systems, 2018, 17(2):1-18 http://dl.acm.org/citation.cfm?id=3157677

    [10] 王钰翔, 李晟洁, 王皓, 等.基于WiFi的非接触式行为识别研究综述[J].浙江大学学报(工学版), 2017, 51(4):648-654 http://www.cqvip.com/QK/90076A/201704/671887974.html

    Wang Yuxiang, Li Shengjie, Wang Hao, et al. Survey on WiFi Based Contactless Activity Recognition[J].Journal of Zhejiang University(Engineering Science), 2017, 51(4):648-654 http://www.cqvip.com/QK/90076A/201704/671887974.html

    [11]

    Wang H, Zhang D, Ma J, et al. Human Respiration Detection with Commodity WiFi Devices: Do User Location and Body Orientation Matter?[C]. ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016

    [12]

    Xie Y, Li Z, Li M. Precise Power Delay Profiling with Commodity WiFi[C]. ACM Mobi Com, Paris, France, 2015

    [13]

    Sen S, Radunovi B, Choudhury R R, et al. Spot Localization Using PHY Layer Information[C]. ACM Conference on Mobile Computing and Networkig, Paris, France, 2015

    [14]

    Zhuo Y, Zhu H, Xue H, et al. Perceiving Accurate CSI Phases with Commodity WiFi Devices[C]. IEEE Conference on Computer Communications, Atlanta, GA, USA, 2017

    [15]

    Xiong J, Jamieson K. ArrayTrack: A Fine-Grained Indoor Location System[C]. Usenix Conference on Networked Systems Design and Implementation, Seattle, WA, USA, 2013

    [16]

    Gaebel E, Zhang N, Lou W, et al. Looks Good to Me: Authentication for Augmented Reality[C]. ACM International Workshop on Trustworthy Embedded Devices, Vienna, Austria, 2016

    [17] 郑建生, 陈鲤文, 代永红. GNSS接收机抗干扰自适应调零技术性能估计[J].武汉大学学报·信息科学版, 2015, 40(8):1006-1011 http://ch.whu.edu.cn/CN/abstract/abstract3404.shtml

    Zheng Jiansheng, Chen Liwen, Dai Yonghong. Performance Estimates of GNSS Receiver Jamming with Adaptive[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1006-1011 http://ch.whu.edu.cn/CN/abstract/abstract3404.shtml

    [18] 刘德树.空间谱估计及其应用[M].合肥:中国科学技术大学出版社, 1997

    Liu Deshu. Spatial Spectrum Estimation and Its Application[M]. Hefei:Press of University of Science and Technology of China, 1997

    [19]

    Shan Tiejun, Wax M, Kailath T. On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals[J]. IEEE Trans Acoust Speech Signal Processing, 1985, 33(4):806-811 doi: 10.1109/TASSP.1985.1164649

    [20]

    Schulz M, Knapp F, Deligeorgopoulos E, et al. Demo: Nexmon in Action: Advanced Applications Powered by the Nexmon Firmware Patching Framework[C]. The 11th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characteri-zation, Snowbird, Utah, USA, 2017

    [21]

    Schulz M, Wegemer D, Hollick M. DEMO: Using NexMon, the C-based WiFi Firmware Modification Framework[C]. ACM Conference on Security and Privacy in Wireless and Mobile Networks, Darmstadt, Germany, 2016

  • 期刊类型引用(10)

    1. 李茗欣,黄远程,竞霞,史孟琦. 融合视觉注意机制的高光谱RX异常检测算法. 红外技术. 2023(04): 402-409 . 百度学术
    2. 黄远程,薛园园,李朋飞. 高光谱影像子空间分析孤立森林异常目标探测方法. 测绘学报. 2021(03): 416-425 . 百度学术
    3. 成宝芝,赵春晖,张丽丽. 高光谱图像异常目标检测算法研究进展. 电光与控制. 2021(05): 56-59+65 . 百度学术
    4. 薛园园,黄远程,苏远超. 空间加权的孤立森林高光谱影像异常目标检测. 测绘科学. 2021(07): 92-98 . 百度学术
    5. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 . 百度学术
    6. 马春笑,黄远程,胡荣明,张春森. 多窗口融合判别子空间的高光谱图像异常检测. 应用科学学报. 2019(01): 64-72 . 百度学术
    7. 杨刚,孙伟伟,张殿发. 利用可分离非负矩阵分解实现高光谱波段选择. 武汉大学学报(信息科学版). 2019(05): 737-744 . 百度学术
    8. 胡学敏,余进,邓重阳,宋昇,陈钦. 基于时空立方体的人群异常行为检测与定位. 武汉大学学报(信息科学版). 2019(10): 1530-1537 . 百度学术
    9. 成宝芝,赵春晖,张丽丽,张健沛. 联合空间预处理与谱聚类的协同稀疏高光谱异常检测. 光学学报. 2017(04): 304-314 . 百度学术
    10. 孙伟伟,蒋曼,李巍岳. 利用稀疏自表达实现高光谱影像波段选择. 武汉大学学报(信息科学版). 2017(04): 441-448 . 百度学术

    其他类型引用(7)

图(7)  /  表(1)
计量
  • 文章访问数:  2227
  • HTML全文浏览量:  223
  • PDF下载量:  345
  • 被引次数: 17
出版历程
  • 收稿日期:  2018-08-29
  • 发布日期:  2018-12-04

目录

    /

    返回文章
    返回