利用流形学习进行高光谱遥感影像的降维与特征提取

Dimensionality Reduction and Feature Extraction from Hyperspectral Remote Sensing Imagery Based on Manifold Learning

  • 摘要: 基于最新的非线性降维方法——流形学习的理论,从高光谱遥感数据内在的非线性结构出发,采用全局化的等距映射(Isomap)方法进行降维,取得了优于常用的MNF方法的结果。把光谱角和光谱信息散度与测地距离相结合用于Isomap算法,结果在冗余方差和光谱规范化特征值方面优于采用传统欧氏距离计算邻域的Isomap方法。实验表明,流形学习是一种有效的高光谱遥感数据特征提取方法。

     

    Abstract: Manifold learning,as the novel nonlinear dimensionality reduction algorithm,is applied to dimensionality reduction and feature extraction of hyperspectral remote sensing information.In order to address inherent nonlinear characteristics of hyperspectral image,Isometric mapping(Isomap),the most popular manifold learning algorithm,is employed to dimensionality reduction of hyperspectral image,and the experimental results show that it outperforms traditional MNF transform.In order to include spectral information into manifold learning,spectral angle(SA) and spectral information divergence(SID),instead of Euclidean distance,are applied to derive the neighborhood distances in Isomap algorithm,and the result is better than that using Euclidean distance in terms of residual variance and normalized spectral eigenvalue.It is concluded that manifold learning is effective to dimensionality reduction and feature extraction from hyperspectral remote sensing imagery.

     

/

返回文章
返回