Research Status and Progress in International Next-Generation Satellite Gravity Measurement Missions
-
摘要: 回顾了卫星重力探测技术的发展,讨论了当前卫星重力计划CHAMP、GRACE、GOCE研究现状和存在的主要问题,评述了国际下一代4个卫星重力计划E.motion、GRACE-FO、NGGM和GETRIS的最新研究进展,并介绍了SWARM卫星星群任务在地球重力场研究中的作用和地位,最后对我国未来卫星重力计划的实施提出了几点建议。Abstract: We review the development of the satellite gravity measuring techniques. The research status of present satellite gravity missions, including CHAMP, GRACE, and GOCE, are discussed and the main shortcomings of GRACE are analyzed. Some suggestions for determining gravity field at higher precision and higher resolution in space and time are proposed, which include reduction of the current level of aliasing, the elimination of systematic distortions (non-isotropic sensitivity of a single pair low-low SST), and the improvement in the separability of the observed geophysical signals are discussed. The progress of the next four international satellite gravity missions: E.motion, GRACE-FO, NGGM, GETRIS, are presented and the role and status of the SWARM satellite constellation mission on the earth's gravity field research are summarized. Finally, several suggestions about the implementation of the future satellite gravity missions in China are put forward. The next generation satellite gravity systems should be capable of global determination of changes in the Earth's gravity field from global down to regional spatial scales and at time scales of two weeks or shorter.
-
-
[1] Ning Jinsheng, Wang Zhengtao. Progress and Present Status of Research on Earth's Gravitational Field[J]. Journal of Geomatics, 2013,38(1):1-7 (宁津生,王正涛. 地球重力场研究现状与进展[J]. 测绘地理信息, 2013,38(1):1-7) [2] Arora K. Geodesy, Figure of the Earth[M]. New York:Springer-Verlag, 2014 [3] Roland P, Thomas G. Future Gravity Missions:An Integral Component of the Global Geodetic Observing System[R]. Österreichischer Geodätentag, Veldenam Wörthersee, 2015 [4] Flechtner F, Sneeuw N, Schuh W D. Observation of the System Earth from Space-CHAMP, GRACE, GOCE and Future Missions:Geotechnologien Science Report No. 20[M]. Berlin, Germany:Springer, 2014 [5] Jürgen Müller, Nico Sneeuw, Frank Flechtner. Future Satellite Gravity Missions Activities in Germany, Technical Report[R]. Graz, Austria, 2009 [6] Gruber T. Future Gravity Missions Outlook and Application[R]. Hamburg, Germany, 2010 [7] Zheng Wei, XuHouze, Zhong Min et al. Progress in International Next-Generation Satellite Gravity Measurement Missions[J]. Journal of Geodesy and Geodynamics, 2012,32(3):152-158(郑伟, 许厚泽, 钟敏, 等. 国际下一代卫星重力测量计划研究进展[J]. 大地测量与地球动力学, 2012,32(3):152-158) [8] Marks K M, Smith W H F, Sandwell D T. Significant Improvements in Marine Gravity from Ongoing Satellite Missions[J]. Mar Geophys Res, 2013, 34:137-146 [9] Flechtner F. Observation of the System Earth from Space-CHAMP, GRACE, GOCE and Future Missions[M]. New York:Springer-Verlag, 2014 [10] Silvestrin P, Aguirre M, Massotti L, et al. The Future of the Satellite Gravimetry After the GOCE Mission[J].Geodesy for Planet Earth,2011,136(1):223-230 [11] Rodell M, Houborg R, Li B, et al. Practical Applications of GRACE and Future Satellite Gravity Missions[R]. Greenbelt, MD, USA, 2015 [12] Zheng W, Hsu H. Requirements Analysis for Future Satellite Gravity Mission Improved-GRACE[J]. SurvGeophys, 2015, 36:87-109 [13] van der Meijde M, Pail R, Bingham R, et al. GOCE Data, Models, and Applications:A Review[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,35:4-15 [14] Panet I, Flury J, Biancale R, et al. System Mass Transport Mission (E.motion):A Concept for Future Earth Gravity Field Measurements from Space[J]. Surv Geophys. 2013,34:141-163 [15] Plag H P, Pail R. A Roadmap for Future Satellite Gravity Missions[R]. Reno, NV, USA, 2015 [16] Panet I, Flury J, Biancale R, et al. System Mass Transport Mission (E.motion):A Concept for Future Earth Gravity Field Measurements from Space[J]. Surv Geophys, 2013,34:141-163 [17] Flechtner F, Morton P, Watkins M, et al. Status of the GRACE Follow-On Mission[C]. EGU General Assembly, Vienna, Austria, 2013 [18] Zheng Wei, Hsu H T, Zhong Min, et al. Efficient and Rapid Estimation of the Accuracy of Future GRACE Follow-on Earth's Gravitational Field Using the Analytic Method[J].Chinese Journal of Geophysics, 2010, 53(2):218-230 [19] Wang Z T, Chao N F. Time-variableGravity Signal Greenland Revealed by SWARM High-Low Satellite-to-Satellite Tracking[J]. Chinese J Geophys, 2014, 57(10):3 117-3 128(王正涛,超能芳.利用SWARM卫星高低跟踪探测格陵兰岛时变重力信号[J]. 地球物理学报,2014,57(10):3 117-3 128) [20] Zou Xiancai, Li Jiancheng, Zhong Luping, et al. Calibration of the Accelerometers Onboard GRACE with the Dynamic Method[J]. Geomatics and Information Science oF Wuhan University, 2015, 40(3):357-360(邹贤才,李建成,衷路萍,徐新禹. 动力法校准GRACE星载加速度计[J]. 武汉大学学报·信息科学版,2015,40(3):357-360) -
期刊类型引用(36)
1. 张菲菲,王皓,张义蜜,韩波,王万银. 西太平洋海域卫星测高重力数据精度分析. 武汉大学学报(信息科学版). 2025(01): 30-41+52 . 百度学术
2. 马龙,刘晨光,鄢全树,邢健,张连伟. 海洋重力仪的格值校正方法研究. 海洋科学进展. 2025(01): 179-187 . 百度学术
3. 张思慧,吴云龙,张毅,杨玉. 一种基于联合变分自编码器的卫星重力数据粗差探测方法研究. 武汉大学学报(信息科学版). 2024(06): 986-995 . 百度学术
4. Feifei Zhang,Dingding Wang,Xiaolin Ji,Fanghui Hou,Yuan Yang,Wanyin Wang. Structural features in the mid-southern section of the Kyushu–Palau Ridge based on satellite altimetry gravity anomaly. Acta Oceanologica Sinica. 2024(04): 50-60 . 必应学术
5. 辛强,包乾宗,赵淑红,刘娅楠. 卫星摄动力仿真技术研究. 先进小卫星技术(中英文). 2024(05): 8-21 . 百度学术
6. 王凤彬,赵淑红. 基于卫星轨道数据的地球重力场反演方法研究. 先进小卫星技术(中英文). 2024(05): 31-38 . 百度学术
7. 田晓龙,张夏青,万永世,郭磊. 卫星重力测量应用及其标准建设研究. 中国标准化. 2023(10): 106-109+118 . 百度学术
8. 成兵,张熙,石鑫,高微,何亚东. 复杂地形多源数据融合GNSS高程转换及实时服务. 测绘科学. 2023(03): 111-119 . 百度学术
9. 冉将军,闫政文,吴云龙,钟敏,肖云,楼立志,王长青. 下一代重力卫星任务研究概述与未来展望. 武汉大学学报(信息科学版). 2023(06): 841-857 . 百度学术
10. 肖云,杨元喜,潘宗鹏,刘晓刚,孙中苗. 中国卫星跟踪卫星重力测量系统性能与应用. 科学通报. 2023(20): 2655-2664 . 百度学术
11. 李静静,黄令勇,张驰,金贤咏,柳丽. GRACE重力卫星运行管理的参考借鉴. 海洋测绘. 2023(03): 6-10 . 百度学术
12. 李荣兴,夏梦莲,谢欢,郝彤,乔刚,刘世杰,冯甜甜,田一翔,安璐,童小华,赵爱国,李洪伟,王晓峰,骆舒蕾,常甜,崔浩田,李国君. 南极冰盖物质平衡变化的卫星遥感监测现状与发展趋势. 地球物理学报. 2023(08): 3115-3143 . 百度学术
13. 许智铭,王正涛. 联合GRACE和水文数据探测松花江流域地下水时空变化. 武汉大学学报(信息科学版). 2023(09): 1409-1415 . 百度学术
14. Yun XIAO,Yuanxi YANG,Zongpeng PAN,Yunlong WU,Zehua GUO. Chinese Gravimetry Augment and Mass Change Exploring Mission Status and Future. Journal of Geodesy and Geoinformation Science. 2023(03): 67-75 . 必应学术
15. Jinkai An,Song Huang,Xiangyang Chen,Tao Xu,Zhiming Bai. Research progress in geophysical exploration of the Antarctic ice sheet. Earthquake Research Advances. 2023(03): 72-84 . 必应学术
16. Xiaozhen Hou,Shi Chen,Linhai Wang,Jiancheng Han,Dong Ma. Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model. Geodesy and Geodynamics. 2023(06): 566-572 . 必应学术
17. 李振洪,朱武,余琛,张勤,杨元喜. 影像大地测量学发展现状与趋势. 测绘学报. 2023(11): 1805-1834 . 百度学术
18. 凤勇,常国宾,钱妮佳,魏征强,宦越洋,杨一帆. GRACE Level-2数据的RTS状态平滑. 测绘学报. 2023(11): 1858-1872 . 百度学术
19. 杨元喜,王建荣,楼良盛,孙中苗,肖云,缪毓喆. 航天测绘发展现状与展望. 中国空间科学技术. 2022(03): 1-9 . 百度学术
20. 汪秋昱,饶维龙,张岚,孙文科. GRACE时变重力信号反演方法研究的进展和展望. 华中科技大学学报(自然科学版). 2022(09): 104-116 . 百度学术
21. 王正涛,倪港骅,申文斌,刘聪. 基于“浅层海水”质量法确定海洋内部层面重力值. 武汉大学学报(信息科学版). 2022(10): 1766-1774 . 百度学术
22. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 . 百度学术
23. 党亚民,蒋涛,陈俊勇. 全球高程基准研究进展. 武汉大学学报(信息科学版). 2022(10): 1576-1586 . 百度学术
24. 韩建成,陈石,卢红艳,徐伟民. 基于Slepian方法和地面重力观测确定时变重力场模型:以2011—2013年华北地区数据为例. 地球物理学报. 2021(05): 1542-1557 . 百度学术
25. 房婷婷,付广裕. 卫星重力与地球重力场的文献计量分析. 地球科学进展. 2021(05): 543-552 . 百度学术
26. Jiancheng Han,Shi Chen,Zhaohui Chen,Hongyan Lu,Weimin Xu. Determination of the degree 120 time-variable gravity field in the Sichuan-Yunnan region using Slepian functions and terrestrial measurements. Earthquake Science. 2021(03): 211-221 . 必应学术
27. 王跃,张德志,张帆. 重力卫星星载GPS简化动力学精密定轨. 北京测绘. 2020(04): 556-560 . 百度学术
28. 吴庭涛,郑伟,尹文杰,张捍卫,张刚强,张文松. 地球卫星重力场模型及其应用研究进展. 科学技术与工程. 2020(25): 10117-10132 . 百度学术
29. 叶玥,程晓,刘岩,杨元德,赵励耘,林依静,璩榆桐. 南极和格陵兰冰盖物质平衡研究进展. 极地研究. 2020(04): 571-585 . 百度学术
30. 夏要伟,郭金运,刘路,孔巧丽. 基于运动学和简化动力学的SWARM卫星精密定轨研究. 大地测量与地球动力学. 2019(04): 392-398 . 百度学术
31. 郭飞霄,孙中苗,任飞龙,汪菲菲. GRACE时变重力场各向异性高斯组合滤波方法. 测绘学报. 2019(07): 898-907 . 百度学术
32. 汪汉胜,相龙伟,Wu Patrick,Steffen Holger,贾路路. 不同模型的地表质量异常一阶项、二阶项估计. 武汉大学学报(信息科学版). 2018(12): 2147-2156+2242 . 百度学术
33. 崔凯,孙强强,刘辉,于达仁. 基于会切场推力器的无拖曳控制系统建模. 推进技术. 2018(11): 2624-2632 . 百度学术
34. 祝竺,赵艳彬,廖鹤,涂海波,张国万,魏小刚. 星载原子干涉技术用于地球重力场测量及其精度评估. 测绘学报. 2017(09): 1088-1097 . 百度学术
35. 赫林,李建成,褚永海. 联合GRACE/GOCE重力场模型和GPS/水准数据确定我国85高程基准重力位. 测绘学报. 2017(07): 815-823 . 百度学术
36. 刘新,郭林熹,郭金运,沈毅,赵春梅. 基于SLR与GRACE卫星重力场2阶项位系数分析. 中国科技论文. 2017(09): 999-1005 . 百度学术
其他类型引用(41)
计量
- 文章访问数: 2471
- HTML全文浏览量: 231
- PDF下载量: 1850
- 被引次数: 77