多站激光点云数据全自动高精度拼接方法研究

李健, 王宗敏, 马玉荣, 田智慧

李健, 王宗敏, 马玉荣, 田智慧. 多站激光点云数据全自动高精度拼接方法研究[J]. 武汉大学学报 ( 信息科学版), 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035
引用本文: 李健, 王宗敏, 马玉荣, 田智慧. 多站激光点云数据全自动高精度拼接方法研究[J]. 武汉大学学报 ( 信息科学版), 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035
LI Jian, WANG Zongmin, MA Yurong, TIAN Zhihui. Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035
Citation: LI Jian, WANG Zongmin, MA Yurong, TIAN Zhihui. Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035

多站激光点云数据全自动高精度拼接方法研究

基金项目: 河南省教育厅教学技术重点研究项目(14A420002)
详细信息
    作者简介:

    李健,博士,讲师,现从事LiDAR点云数据处理与应用及三维重建方面的研究。

  • 中图分类号: P237.3;TP751

Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning

Funds: Science and Technology Key Project of the Education Department Henan Province,No.4A420002.
More Information
    Author Bio:

    LI Jian,PhD,lecturer,specializes in LiDAR data processing and 3Dreconstruction.

  • 摘要: 目的 针对目前多站点云数据拼接存在的效率低和自动化程度低等问题,提出了基于地面激光点云强度信息的2D-3D点云数据高精度全自动拼接方法。首先,将强度信息通过三次样条插值算法生成二维影像,采用基于图形处理器(GPU)的加速尺度不变特征变换(SIFT)算子匹配得到二维同名特征点,剔除粗差;然后,反算得到特征点在三维点云中的坐标,并通过三维空间法向量对三维同名特征点进行精炼。利用精炼的三维特征点进行多站点云数据拼接,可提高多站点云海量数据拼接的精度和效率。
    Abstract: Objective The mosaicking of point clouds is a key step in point cloud processing.We propose a pointcloud mosaicking technology for multi-station laser scanning based on 2Dimage matching and 3Dcor-responding feature point refinement to solve the problems in existing point cloud mosaicking method-ologies for multi-station laser scanning,such as low efficiency,poor accuracy,and low automation.Firstly,the 2Dimages are generated from the derivative information from laser scanning data using in-terpolation algorithms.Secondly,2Dcorresponding feature points are obtained using GPU accelera-tion SIFT image matching,eliminating gross errors.Finally,3Dcorresponding feature points are ac-quired using an inversion algorithm;identifying whether they are same corresponding feature points inthe 3Dpoint cloud.Experiments demonstrate the feasibility and effectiveness of the proposed method.
  • [1] McKay N,Besl P.A Method for Registration for 3-D Shapes[J].IEEE Transactions on Pattern Anal-ysis and Machine Intelligence,1992,14(2):239-256[2] Zhang Zhengyou.Iterative Point Matching for Reg-istration of Free-Form Curves and Surfaces[J].In-ternational Journal of Computer Vision,1994,13(2):119-164[3] Medioni G,Chen Y.Object Modeling by Registra-tion of Multiple Range Images[J].Image and Vi-sion Computing,1992,10(3):156-168[4] Yang Xianhui,Wang Huinan.Application Researchof ICP Algorithm in 3DPoint Cloud Alignment[J].Computer Simulation,2010,27(8):235-238(杨现辉,王惠南.ICP算法在3D点云配准中的应用研究[J].计算机仿真,2010,27(8):235-238)[5] Chen Y,Medioni G.Object Modelling by Registra-tion of Multiple Range Images[J].Image and Vi-sion Computing,1992,10(3):145-155[6] Park S Y,Subbarao M.A Fast Point-to-TangentPlane Technique for Multi-view Registration[C].The Fourth International Conference on 3-D DigitalImaging and Modeling,Banff,Alberta,Canada,2003[7] Johnson A E,Hebert M.Surface Matching for Ob-ject Recognition in Complex Three-dimensionalScenes[J].Image and Vision Computing,1998,16(9/10):635-651[8] Murino V,Ronchetti L,Castellani U.Reconstruc-tion of Complex Environments by Robust Pre-a-ligned ICP[C].3-D Digital Imaging and Modeling,Quebec City,Que,2001[9] Lucchese L,Doretto G,Cortelazzo G M.A Fre-quency Domain Technique for Range Data Registra-tion[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2002,24(11):1468-1484[10]Sablatnig R,Kampel M.Model-Based Registrationof Front-and Backviews of Rotationally SymmetricObjects[J].Computer Vision and Image Under-standing,2002,87(1-3):90-103[11]Stamos L M.Automated Feature-Based Range Reg-istration of Urban Scenes of Large Scale[C].TheIEEE Computer Society Conference on ComputerVision and Pattern Recognition,Madison,2003[12]Johnson A E,Hebert M.Surface Matching for Ob-ject Recognition in Complex Three-DimensionalScenes[J].Image and Vision Computing,1998,16(9/10):635-651[13]Zheng Dehua,Yue Dongjie,Yue Jianping.Geomet-ric Feature Constraint Based Algorithm for BuildingScanning Point Cloud Registration[J].Acta Geo-daetica et Cartographica Sinca,2008,37(4):464-468(郑德华,岳东杰,岳建平.基于几何特征约束的建筑物点云配准算法[J].测绘学报,2008,37(4):464-468)[14]Sheng Min.Researeh on the Methods of NonlinearInterpolation for Digital Image Proeessing[D].Hefei:Hefei University of Technology,2009(盛敏.数字图像处理中非线性插值方法的应用研究[D].合肥:合肥工业大学,2009)[15]Kim J,Park E,Cuiet al X.A Fast Feature Extrac-tion in Object Recognition Using Parallel Processingon CPU and GPU[C].Systems,Man and Cyber-1119武 汉 大 学 学 报 · 信 息 科 学 版2014年9月netics,San Antonio,TX,2009[16]Bjorke K.Image Processing on Parallel GPU PixelUnits[C].The 2nd International Conference on Ad-vanced Computer Control,Shenyang,2010[17]Anderson K,Wang Y,Camargo A.Real-Time Un-manned Aircraft Systems Surveillance Video Mosa-icking Using GPUs[C].The International Societyfor Optical Engineering,Orlando,Florida,2010[18]Flannery F,Toal D,Horgan J.Towards Real TimeVision Based UUV Navigation Using GPU Technol-ogy[C].Oceans 2009-Europe,Bremen,2009[19]Chen Meijuan,Chen Yumin.The Improved MovingLeast-Square Approximation[J].Chinese Quarterlyof Mechanics,2003,24(2):266-272(陈美娟,程玉民.改进的移动最小二乘法[J].力学季刊,2003,24(2):266-272)
  • 期刊类型引用(10)

    1. 李茗欣,黄远程,竞霞,史孟琦. 融合视觉注意机制的高光谱RX异常检测算法. 红外技术. 2023(04): 402-409 . 百度学术
    2. 黄远程,薛园园,李朋飞. 高光谱影像子空间分析孤立森林异常目标探测方法. 测绘学报. 2021(03): 416-425 . 百度学术
    3. 成宝芝,赵春晖,张丽丽. 高光谱图像异常目标检测算法研究进展. 电光与控制. 2021(05): 56-59+65 . 百度学术
    4. 薛园园,黄远程,苏远超. 空间加权的孤立森林高光谱影像异常目标检测. 测绘科学. 2021(07): 92-98 . 百度学术
    5. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 . 百度学术
    6. 马春笑,黄远程,胡荣明,张春森. 多窗口融合判别子空间的高光谱图像异常检测. 应用科学学报. 2019(01): 64-72 . 百度学术
    7. 杨刚,孙伟伟,张殿发. 利用可分离非负矩阵分解实现高光谱波段选择. 武汉大学学报(信息科学版). 2019(05): 737-744 . 百度学术
    8. 胡学敏,余进,邓重阳,宋昇,陈钦. 基于时空立方体的人群异常行为检测与定位. 武汉大学学报(信息科学版). 2019(10): 1530-1537 . 百度学术
    9. 成宝芝,赵春晖,张丽丽,张健沛. 联合空间预处理与谱聚类的协同稀疏高光谱异常检测. 光学学报. 2017(04): 304-314 . 百度学术
    10. 孙伟伟,蒋曼,李巍岳. 利用稀疏自表达实现高光谱影像波段选择. 武汉大学学报(信息科学版). 2017(04): 441-448 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1803
  • HTML全文浏览量:  78
  • PDF下载量:  1367
  • 被引次数: 17
出版历程
  • 收稿日期:  2014-04-10
  • 修回日期:  2014-09-04
  • 发布日期:  2014-09-04

目录

    /

    返回文章
    返回