MODIS EVI指数跨传感器应用的挑战:以Landsat-8为例

Challenges of Cross-Sensor Application of MODIS EVI: A Case Study of Landsat-8

  • 摘要: MODIS EVI指数究竟能否直接应用于其他卫星传感器数据,这是一个EVI提出近30年尚未被探索的重要挑战。EVI是基于MODIS数据开发的,指数带有根据MODIS数据特征确定的4个经验参数。长期以来,用户们都是将这些基于MODIS的参数不加修改地直接应用于其他卫星数据上。然而,这些参数究竟是否适用于其他卫星数据,却鲜有研究见及。因此,本研究以EVI最常应用的Landsat-8数据和6个试验区为例,系统探讨了这一问题。由于NDVI的公式不带参数,MODIS与Landsat-8NDVI之间的关系不会受到参数的影响,因此可将二者的关系作为参考基准,用以评估MODIS EVI对Landsat-8数据的适用性。鉴于MODIS EVI还引入了蓝光波段,因此进一步构建了辅助指数EVIb,用以考察蓝光波段对MODIS EVI在Landsat-8的应用是否也会产生影响。研究结果发现,在6个试验区的MODIS和Landsat-8的同步观测中,两种传感器EVI数据之间的偏差比它们在NDVI数据之间的偏差平均大了近3倍,R2的偏差也达11.8%。分析表明,产生偏差的原因并不是来自蓝光波段,而是源于MODIS EVI的经验参数。敏感性检验进一步证明,EVI公式中4个参数的交互作用对EVI值产生了显著影响,其中尤以土壤调节因子L的敏感性最强。据此,我们建议在EVI应用于Landsat-8时应对其参数进行校正。本研究通过交叉校正,将6个试验区MODIS与Landsat-8 EVI之间的平均偏差率从12.8%降低至接近0%。这一研究对EVI指数的跨传感器应用具有重要的指导意义,同时对区域乃至全球植被变化的精准监测也具有重要的实践价值。

     

    Abstract: Objectives: This study aims to investigate the applicability of the MODIS Enhanced Vegetation Index (EVI) when directly applied to data from other satellite sensors, an important challenge that has remained unexplored for nearly 30 years since the introduction of EVI. It focuses on whether the four empirical parameters of EVI developed based on MODIS data are suitable for other satellite datasets, using Landsat-8 data as a case study. Methods: We systematically examined the relationship between MODIS EVI and Landsat-8 NDVI across six test areas. Given that the NDVI formula does not include parameters, the NDVI relationship between MODIS and Landsat-8 served as a reference for assessing the suitability of MODIS EVI for Landsat-8 data. Additionally, a modified EVI, referred to as EVIb, was constructed to evaluate the influence of the blue band on the MODIS EVI application in Landsat-8 data. Results: The results revealed that the discrepancies between EVI data from MODIS and Landsat-8 were significant, which is, on average, nearly three times larger than those observed for NDVI data from the two satellites, with an 11.8% difference in (R2). The analysis indicated that the source of these discrepancies was not the blue band, but rather the four empirical parameters used in MODIS EVI. Sensitivity testing further confirmed that the interactions among the four parameters in the EVI formula significantly affected EVI values, particularly highlighting the strong sensitivity of the soil adjustment factor (L). Conclusions: Therefore, we recommend calibrating these parameters when applying EVI to Landsat-8. The cross-calibration conducted in this study has reduced the average bias rate between the MODIS and Landsat-8 EVI from 12.8% to nearly 0% across the six test areas. This research provides significant guidance for the cross-sensor application of the EVI index and holds important practical value for the precise monitoring of vegetation changes at both regional and global scales.

     

/

返回文章
返回