基于水深分区的海底地形GGM反演

GGM Inversion of Seabed Topography Based on Water Depth Zoning

  • 摘要: 重力地质法(Gravity Geologic Method,GGM)是利用卫星测高重力数据反演海底地形的重要方法之一。利用该方法反演海底地形时,密度差参数是影响结果的关键因素之一。常规GGM方法通常采用适用于整个研究区的全局密度差参数进行海底地形反演。然而,由于大范围海域内海底地形结构复杂且空间变化显著,全局最优密度差参数往往难以准确表征局部海域的地形特征,从而导致相应区域的反演效果下降。针对于此,提出了一种基于水深分区计算局部区域最佳密度差参数的方法,利用等深线将研究区域划分为若干子区域,分别求取每个子区域的最佳密度差参数,从而改善重力地质法反演海底地形的精度。以中国南海的中部海域(113°E-119°E,12°N-19°N)为例,划分为了四个子区域。基于SDUST2022GRA重力数据和美国国家环境信息中心(NCEI)的船载测深数据,构建了研究区域分辨率为1'× 1'的海底地形模型(Zone_Model)。将Zone_Model预测水深与检核点处船载实测水深比较,其差值的标准差为41.78 m,与采用一个全局最优密度差参数构建的海底地形模型相比,反演精度提高了4.95 m,优于国际上常用的海底地形模型GEBCO_2024和topo_25.1(与检核点实测水深差值的标准差为50.86 m和52.41 m)。说明了本方法可以提高GGM方法反演海底地形模型的精度。

     

    Abstract: Objectives: The Gravity Geologic Method (GGM) serves as a key technique for deriving seafloor topography from gravity anomaly data,where the density contrast parameter critically influences inversion results. Conventional GGM methods typically employ a globally optimal density contrast parameter applicable to the entire study area for seafloor topography inversion. However, due to the complex structure and significant spatial variations of seafloor topography in large-scale marine areas, the globally optimal density contrast parameter often fails to accurately characterize the topographic features of localized sea regions. In fact, density contrast parameters vary across different regions, and using a single density contrast parameter leads to reduced inversion performance in the corresponding areas. Methods: This paper proposes a method for calculating optimal local density contrast parameters based on bathymetric zoning, the study area is divided into several subregions using isobaths, and the optimal density contrast parameter for each subregion is derived separately, thereby improving the inversion accuracy of seafloor topography via the gravity-geological method. Taking the central South China Sea (113°E-119°E, 12°N-19°N) as a case study, it is divided into four subregions. Based on SDUST2022GRA gravity data and shipborne bathymetric data from the National Centers for Environmental Information (NCEI), a seafloor topography model (Zone_Model) with a resolution of 1'× 1' is constructed for the study area. Results:Comparison between Zone_Model-predicted depths and ship-measured verification data yielded a standard deviation (STD) of 41.78 m. This represented a 4.95 m accuracy improvement over models employing a single global density contrast parameter. The Zone_Model also surpassed the performance of established global models GEBCO_2024 (STD: 50.86 m) and topo_25.1 (STD: 52.41 m). Analysis revealed that subregions with lower average topographic relief exhibited superior inversion accuracy compared to those with greater relief. Conclusions: The method of dividing the study sea area into subregions according to equal water depth intervals and deriving the optimal density contrast parameter for each subregion is feasible for improving the accuracy of the GGM_Model. When the density of shipborne bathymetric data is sufficient, the smoother the terrain, the higher the accuracy of the inversion results. Topographic relief plays a dominant role in influencing inversion accuracy, while the density of shipborne bathymetric data plays a secondary role.

     

/

返回文章
返回