联合大语言模型和跨模态时序框架的高精度电离层TEC预报方法

A High-Precision Ionospheric TEC Forecasting Method Combining Large Language Models and Cross-Modal Temporal Framework

  • 摘要: 准确、可靠地预报电离层总电子含量(Total Electron Content,TEC)对于导航、通信等诸多领域具有重要研究意义,传统数学方法难以对非线性、复杂变化系统的电离层进行精确预报。首次利用DeepSeek、Qwen、GPT2、Llama等前沿大语言模型(LargeLanguage Model,LLM),并结合跨模态时序预测框架AutoTimes,构建了面向电离层应用的高精度TEC智能预报模型,系统研究并分析了该模型在太阳活动低年与高年的全球电离层TEC预报能力。以欧洲定轨中心(Center for Orbit Determination in Europe,CODE)事后电离层TEC产品作为数据训练集和预报参考值,首次评估了不同大语言模型的电离层TEC预报应用效果。实验结果表明,采用大语言模型和跨模态框架的电离层TEC预报产品,其整体预测精度显著优于CODE发布的C1PG(CODE's 1-DayPredicted Global Ionospheric Map)预报产品,预测值和观测真值的最高相关性可达到0.976 5,太阳活动低年和高年实验的最优均方根误差(Root Mean Square Error,RMSE)分别为1.843 TECU(Total Electron Content Unit)和5.577 TECU,较C1PG产品的降幅分别为10.8%和10.4%。

     

    Abstract: Objectives: Accurate and reliable forecasting of ionospheric total electron content (TEC) holds significant research value for navigation, communication, and related domains. Traditional mathematical methods face challenges in precisely predicting the nonlinear and complex dynamic systems of the ionosphere.Methods: We pioneers the application of cutting-edge large language models (LLMs) including DeepSeek, Qwen, GPT2, and Llama, integrated with a cross-modal temporal forecasting framework AutoTimes, to construct a high-precision intelligent TEC prediction model for ionospheric applications. We systematically investigated and analyzed the model's global ionospheric TEC forecasting capabilities during both solar minimum and maximum periods. Using post-processed ionospheric TEC products from the Center for Orbit Determination in Europe (CODE) as training data and reference values, we conducted the first comprehensive evaluation of different LLMs' performance in ionospheric TEC forecasting.Results: Experimental results demonstrate that the LLM-based cross-modal framework significantly outperforms CODE's C1PG (CODE's 1-Day Predicted Global Ionospheric Map) forecasting product. The maximum correlation coefficient between predicted values and observational ground truth reaches 0.976 5. The optimal root mean square error (RMSE) values for solar minimum and maximum periods are 1.843 TECU (total electron content unit) and 5.577 TECU respectively, representing reductions of 10.8% and 10.4% compared to C1PG products.Conclusions: The proposed method establishes a new benchmark for ionospheric forecasting, demonstrating superior adaptability across different solar activity phases, and it provides a robust theoretical foundation and methodological framework for subsequent studies in ionospheric TEC prediction.

     

/

返回文章
返回