基于船载重力异常数据的海洋重力场协方差特征分析

Based on Shipborne Gravity Anomaly Data Analyse Covariance Chracteristic of Ocean Gravity Field

  • 摘要: 陆地区域重力场协方差模型研究取得了大量的成果,但对海洋重力场统计特征的相关距离及其与海底地形的相关性等方面的研究较少。为此,开展基于船载重力异常数据进行海洋重力场协方差分析精化海洋重力场具有重要意义。最小二乘配置法是精化局部重力场模型的重要算法,其关键是构建重力场量的协方差模型。首先,利用船载重力测量数据空间分布特征,提出了沿测线方向计算协方差函数的方法。其次,选择在部分地形地貌条件下地面空间重力异常方差值和船载重力异常方差值近似的场景,比较了两者协方差函数参数的差异,指出海洋重力异常在不同方向表现了一定的差异性。随后,基于全球重力场模型模拟船载重力测量测线分布数据,比较了测线协方差函数和格网协方差函数参数的差异,提出了基于船载重力异常的协方差建模方案。最后,利用船载重力异常数据,建立了试验区域的协方差函数模型。研究结果表明:可以直接对船载重力测线数据进行测线方向的协方差函数建模,进而得到区域的协方差函数模型。不建议对船载重力测量测线分布数据进行格网化后,再建立协方差函数模型。在相同的空间距离情况下,海上测线格网化后的重力异常相关距离比测线重力异常相关距离大,海面重力异常相关距离比地面重力异常的相关距离大。海洋格网重力异常协方差的相关距离为40.181km,而测线重力异常协方差相关距离为19.893km,为海上离散重力数据格网化的半径选择提供了参考。试验区海洋船载重力测线数据的协方差函数模型,其相关距离为18.878km。文中所提方法可为基于协方差函数的最小二乘配置法进行海洋重力场精细建模提供参考。

     

    Abstract: Significance: Given the limited research on the statistical properties of marine gravity fields, further investigation is crucial. Therefore, conducting covariance analysis of marine gravity fields utilizing shipborne gravity anomaly data is of significant importance. Objectives: The least squares collocation (LSC) method plays a pivotal role in refining local gravity field models, with the development of covariance models for gravity field quantities serving as the cornerstone. Despite extensive research on covariance models for land gravity fields, studies on marine gravity fields remain relatively scarce. Methods: Initially, a method for computing the covariance function along the survey line direction was introduced, leveraging the spatial distribution characteristics of shipborne gravity measurement data. Subsequently, a comparison of covariance function parameters was conducted under conditions where the variance values of both ground and shipborne gravity anomalies were approximately equal, considering specific topographical and geomorphological factors. This comparison revealed directional differences in marine gravity anomalies. Furthermore, using shipborne gravity measurement data simulated by the global gravity field model, a comparison was made between survey line and grid covariance function parameters, leading to the proposal of a covariance modeling approach based on shipborne gravity anomalies. Ultimately, the covariance function model for the experimental area was constructed using shipborne gravity anomaly data. Conclusions: Directly modeling the covariance function along survey lines for shipborne gravity data is feasible, leading to a regional model. Griding the data before modeling is not recommended. At equal spatial distances, gridded marine gravity anomalies have a larger correlation distance than survey line anomalies, and sea surface anomalies have a larger correlation distance than land anomalies. The marine gridded gravity anomaly covariance has a correlation distance of 40.181 km, while the survey line anomaly covariance has a correlation distance of 19.893 km, providing a reference for gridding marine discrete gravity data. The experimental area's shipborne gravity survey line data covariance function model has a correlation distance of 18.878 km.Application Scenarios: The methods proposed in this study can provide valuable insights and serve as a reference for the precise modeling of marine gravity fields using the least squares collocation method, based on covariance functions.

     

/

返回文章
返回