利用小波分解重构GRACE地下水储量成分研究

Estimation of GRACE Groundwater Storage Components Using Wavelet Decomposition

  • 摘要: 重力恢复与气候实验(gravity recovery and climate experiment, GRACE)数据解算出的时变重力场模型为陆地水储量的研究提供了一种全新的途径,然而,GRACE数据只能解算出格网点分辨率上总体的水储量变化,包括地表水、土壤水、地下水和植被水等,却无法分离垂直层面上不同深度的水储量成分。采用小波分解方法,将扣除全球陆地数据同化系统水文模型地表水成分的GRACE信号进行分解,利用分解得到的小波子函数结合美国区域内的水井实测数据对地下水成分进行回归分析,并通过二维曲面插值的方法得到全美地区不同小波子函数的回归系数,以此来重构长时间连续的地下水储量变化序列。结果表明,在测试点位中61.84%以上的点位其相关系数达到0.4以上,62.90%的点位其均方根值在1.0 m以下,此方法可以得到地下水时空分布特征,为地下水资源的利用与研究提供数据支撑。

     

    Abstract:
    Objectives The time-varying gravity field models derived from the gravity recovery and climate experiment (GRACE) offer a novel approach for studying terrestrial water storage. However, GRACE data resolve the total water storage changes at grid points, encompassing surface water, soil moisture, groundwater, and vegetation water, without the ability to differentiate the vertical distribution of water components.
    Methods We employ wavelet decomposition to process GRACE signals, from which the surface water component, as modeled by the global land data assimilation system (GLDSA) hydrological model, has been subtracted. The resulting wavelet sub-functions are then combined with groundwater measurements from wells across the USA to perform a regression analysis on the groundwater component. By employing two-dimensional surface interpolation, we obtain regression coefficients for various wavelet sub-functions throughout the USA, enabling the reconstruction of long-term continuous sequences of groundwater storage changes.
    Results The results show that over 61.84% of the test sites have a correlation coefficient greater than 0.4, and 62.90% of the sites exhibit root mean square (RMS) residuals below 1.0 m.
    Conclusions This methodology successfully captures the spatiotemporal characteristics of groundwater distribution, providing valuable data support for the utilization and research of groundwater resources.

     

/

返回文章
返回