刘稳, 詹庆明, 邵振峰, 邱春迪, 文超. 界面密度对城市街道自然通风和污染扩散影响的仿真模拟[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20210711
引用本文: 刘稳, 詹庆明, 邵振峰, 邱春迪, 文超. 界面密度对城市街道自然通风和污染扩散影响的仿真模拟[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20210711
LIU Wen, ZHAN Qingming, SHAO Zhenfeng, QIU Chundi, WEN Chao. CFD Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20210711
Citation: LIU Wen, ZHAN Qingming, SHAO Zhenfeng, QIU Chundi, WEN Chao. CFD Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20210711

界面密度对城市街道自然通风和污染扩散影响的仿真模拟

CFD Simulation of the Influence of Street Interface Density on Natural Ventilation and Pollutants Diffusion in Urban Streets

  • 摘要: 在完全过渡到绿色交通之前,由高密度建设和车辆尾气排放直接引起的城市街道空气污染问题仍是城市大气污染治理的一个重要议题。针对城市街道设计管控中界面密度这一重要形态参数构建典型城市街道空气流动和污染扩散的三维仿真模型,利用CFD数值模拟方法研究界面密度对城市街道自然通风和空气质量的影响并评估不同界面密度下城市街道自然通风性能和污染扩散能力。研究表明:街道任意一侧界面密度降低整体均有利于城市街道自然通风性能和污染扩散能力的提升,而相比街道下游,上游界面密度降低对街道通风环境和空气质量的改善效果更为显著;建筑布局形式对不同界面密度下城市街道整体空气流动和污染扩散的影响具有“临界效应”,该临界的上游界面密度为0.8左右,即当上游界面密度在0.6~0.8时,采用下游界面密度低于上游的错列式布局可以提升街道自然通风性能和污染扩散能力,而当上游界面密度在0.8~1.0时,相比对称式布局,采用错列式布局更有利于促进街道整体空气流动和污染扩散。

     

    Abstract: Objectives: Before the comprehensive transition to the era of low-carbon travel, the air pollution in urban canopy layer (UCL) directly caused by vehicle exhaust emission has always been a hot topic to deal with urban atmospheric environment. Methods: This paper constructs a set of three-dimensional physical models of typical urban streets under different street interface density (SID), and uses the computational fluid dynamics (CFD) numerical simulation methods to study the influence of SID on air flow and pollutant diffusion. The indices including air exchange rate (AER), purification flow rate (PFR), average residence time (ART) and pollutant concentration at the pedestrian area were used to evaluate the natural ventilation performance and pollution diffusion capacity of urban streets under different SIDs. Results: The results show that the CFD simulation methods can better represent the paradigm of air flow and pollutant diffusion in urban street space. The reduction of SID on either side of the urban street is conducive to the optimization of its natural ventilation and air quality. Compared with the downstream of urban street, the reduction of SID on the upstream has a more significant effect on the improvement of air pollution. The layout of buildings on both sides of the urban street has a ‘Critical Effect’ on the overall ventilation performance and pollutant diffusion capacity of urban streets under different SIDs, and the critical upstream SID is about 0.8. Conclusions: CFD simulation can present the detailed process of air flow and pollutant diffusion, which can promote the scientific planning and design control of urban street space, and provide active response strategies for residents near urban streets to deal with traffic related air pollution.

     

/

返回文章
返回