

武汉大学学报(信息科学版) Geomatics and Information Science of Wuhan University ISSN 1671-8860,CN 42-1676/TN

《武汉大学学报(信息科学版)》网络首发论文

题目:	基于高频 GNSS 观测的甘肃积石山 6.2 级地震同震形变				
作者:	李志才,陈智,武军郦,周星,张鸣之,赵利江,余博尧,周佳,张澍				
DOI:	10.13203/j.whugis20240004				
收稿日期:	2024-01-08				
网络首发日期:	2024-01-15				
引用格式:	李志才,陈智,武军郦,周星,张鸣之,赵利江,余博尧,周佳,张澍.基				
	于高频 GNSS 观测的甘肃积石山 6.2 级地震同震形变[J/OL]. 武汉大学学报(信				
	息科学版). https://doi.org/10.13203/j.whugis20240004				

www.cnki.net

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶 段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期 刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出 版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出 版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编 辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、 出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。 为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容, 只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。 DOI:10.13203/j.whugis20240004

引用格式: 李志才,陈智,武军郦,等. 基于高频 GNSS 观测的甘肃积石山 6.2 级地震同震形变[J].武汉大学学报(信息科学版),2024,DOI:10.13203/J.whugis20240004(Li Zhicai, Chen Zhi, Wu Junli,et al. Co-seismic Deformation of the Jishishan 6.2 Earthquake in Gansu Province Based on High-Frequency GNSS Observation[J].Geomatics and Information Science of Wuhan University,2024,DOI:10.13203/J.whugis20240004)

基于高频 GNSS 观测的甘肃积石山 6.2 级地震同震形变

李志才1陈智1武军郦2周星3张鸣之4赵利江5余博尧6周佳1张澍6

1 中国矿业大学(北京)地球科学与测绘工程学院,北京,100083

2 国家基础地理信息中心测绘基准部,北京,100830

3 甘肃省测绘工程院, 甘肃 兰州, 730000

4 中国地质环境监测院(自然资源部地质灾害技术指导中心),北京,100081

5 青海省基础测绘院, 青海 西宁, 810001

6 北京讯腾智慧科技股份有限公司,北京,100029

摘要: 2023年12月18日发生的甘肃积石山6.2级地震,造成了重大的人员伤亡。收集了不同系统32个 卫星导航定位基准站(continuous operational reference system, CORS)当天的高频全球导航卫星系统(global navigation satellite system, GNSS)观测数据,进行了高精度动态单历元数据处理。处理结果发现,震 中附近50 km以内的高频 GNSS 可以监测到明显的同震形变波形,峰值变化最大达到50~60 mm; 地震永久 变形主要影响范围为距离震中30 km 的区域,距离震中5 km 的测站记录到东西向永久变形~13 mm,南北向 变形~10 mm,以及~8 mm 的垂向变形。采用自适应噪声完全集合经验模态分解方法对高频 GNSS 波形信号进 行分解,可分离出明显的同震形变信号,最远可探测到距离震中100 km。采用模态分解方法可探测出更多 的同震信号,这为利用丰富的 CORS 站资源监测地震的同震形变提供更多可行性。

关键词:定位基准站;高频 GNSS 观测;完全集合经验模态分解;同震形变;积石山地震中图分类号: P228 文献标识码: A

Co-seismic Deformation of the Jishishan 6.2 Earthquake in Gansu Province Based on High-Frequency GNSS Observation

Li Zhicai¹ Chen Zhi¹ Wu Junli² Zhou Xing³ Zhang Mingzhi⁴ Zhao Lijiang⁵ Yu Boyao⁶ Zhou Jia¹ Zhang Shu⁶ 1 School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2 Geodesy Department, National Geomatics Center of China, Beijing 100830, China

3 Surveying and Mapping Engineering Institute of Gansu Province, Lanzhou 730000, China

4 China Institute of Geo-Environment Monitoring (Guide Center of Prevention Technology for Geo-Hazard, MNR), Beijing 100081, China

5 Qinghai Institute of Basic Surveying and Mapping, Xining 810001, China

6 Beijing CNTEN Smart Technology Co. Ltd, Beijing, 100029, China

Abstract: Objectives: The aim of this study is to obtain a high-precision co-seismic deformation field of a 6.2 magnitude earthquake occurred in Jishishan County, Gansu Province, China from high frequency GNSS observation data, which will enable the real-time monitoring of deformations for earthquakes with a magnitude of 6 or higher using a massive network of continuously operating reference stations (CORS). **Methods**: This study employed the Pride 3.0 software developed by Wuhan University for high-precision dynamic processing of 32 CORS station with high-frequency data, obtaining co-seismic deformation time series for each station. For stations showing significant

co-seismic responses in close proximity, dynamic solutions with large changes at the seismic moment were first excluded. The smoothed single-epoch results before and after the earthquake were retained. For stations with less obvious co-seismic responses, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method was used to detect high-frequency co-seismic signals. **Results**: The main range of permanent deformation caused by earthquakes is in the area 30km away from the epicenter. Stations 5km away from the epicenter recorded permanent deformation in the east-west direction of 13mm, north-south direction of 10mm, and vertical deformation of 8mm. Modal decomposition identified 13 stations with seismic responses in the east or north directions, including CORS stations LXJS, GUTI, LXYJ within a 40 km radius from the epicenter. It could detect the seismic deformation far from 100km better than the original GNSS results, which means this method could be used for waveform signal reconstruction, noise removal, and expanding the distance of CORS station monitoring for co-seismic signals. **Conclusions**: This study indicate that various types of CORS station equipment with different foundation can monitor earthquake signals. The CEEMDAN method for signal decomposition can detect co-seismic signals faraway, providing feasibility for monitoring seismic co-seismic deformation information using a large number of CORS station resources in the future.

Keywords: continuous operational reference system(CORS); high frequency GNSS observation ; complementary ensemble empirical mode decomposition with adaptive noise(CEEMDAN); co-seismic deformation; Jishishan earthquake

根据中国地震台网中心测定,北京时间 2023-12-18T23:59:30,甘肃临夏积石山发生 6.2 级地震,震中位于(35.7 N, 102.79 E)。地震发生在青藏高原东北缘,构造部位上属于左旋 走滑的西秦岭断裂与右旋走滑的日月山断裂之间的拉脊山挤压构造带,从区域构造和震中位 置判断,发震断裂应为拉脊山南缘断裂¹¹。该地震是中国大陆 2023 年内发生的最大地震, 距离上一次甘肃 2013 年岷县 6.6 级地震已过去 10 年[2]。地震发生后相关机构和单位快速开 展了震源特征、震动强度预测、余震序列特征和危险性估计。中国地震局地球物理研究所的 研究结果表明此次地震为逆冲型地震(兼有少量走滑分量),地震矩震级为 6.0,最佳矩心 震源深度为8km, 破裂持续时间约为8s, 破裂由震中主要向北西方向延伸, 由深层向浅层 扩展^[3]。王勤彩等^[4]使用区域地震台网资料,采用 CAP 方法反演了该地震的震源机制解,结 果显示,该地震为逆冲型地震,与美国地质调查局、德国地学中心和美国地质勘探局的震源 机制解基本一致,震源机制解节面 II 的走向与积石山东缘断裂大致相同。黄观文等[5]采集了 积石山地震远场不同距离(60 km、111 km、140 km 和 240 km)的 4 处滑坡隐患区 GNSS 观 测站和加速度计实时监测数据,综合分析了主震和余震对边坡体的破坏性影响。陈博等16基 于光学和遥感卫星影像获取了积石山地震同震滑坡易发性空间分布和地震建筑物损害代理 图,对同震滑坡进行了应急识别,探讨了地震、地形地貌和人类活动等因素对同震滑坡的影 响。王立朝等[7]基于甘肃青海两省震后迅速开展的地震地质灾害调查成果,对积石山地震诱 发地质灾害的特征、控制因素、发展趋势进行了分析,提出防灾减灾措施建议。

地震产生的强烈信号可导致地表产生永久性的变形,通过事后的水准测量、三角测量等 技术手段可以得到精确的变形结果^[8]。随着卫星导航定位技术的出现,很多学者开始采用静态 GPS 观测来获取地表的永久形变进而研究地震断层的发震机制等,如 2001 年昆仑山地 震、2008 年汶川地震、2013 年芦山地震、2021 年玛多地震、2023 年泸定地震等,不同学者 采用了静态 GPS 成果获得高精度的同震形变,进而展开相关的研究工作^[9-14]。近 10 年来, 随着定位基准站 (continuous operational reference system, CORS) 布设的密度增加,以及网络 实时通讯技术的进步,利用高频全球导航卫星系统(global navigation satellite system, GNSS)信号获取同震形变开展地震研究工作也逐渐发展起来,如 2011年日本地震、2021年 玛多地震、2022年门源地震、2023年泸定地震等,相关学者利用高频数据开展了大量的研 究工作,极大促进了高频 GNSS 观测技术在地震反演中的应用^[15-19]。

当前我国政府和企业投资了大量资金建设了约 2.5 万座 CORS 站,根据各自业务不同对 外提供服务。如自然资源系统在全国已建设 2 656 座 CORS 站,基本实现省级层面的实时动 态定位技术(real time kinematic, RTK)服务,国家级层面的广域实时精密单点定位 (precise point positioning, PPP)服务^[20]。中国移动公司于 2020 年在全国范围内建设 了 4 500 座 CORS 站,目前已正式对外提供精密实时定位服务;此外千寻位置、六分科技、 讯腾智慧等公司在全国也分别建设了大量的 CORS 站,根据各自业务不同,提供诸如导航、 无人驾驶、燃气巡检等实时定位服务^[20]。自然资源部在全国布设了超 5 万个地质灾害监测 台站,可对包括 GNSS 位移在内的多要素指标进行实时监测与风险预警^[21]。海量的 CORS 站已经为地震实时动态监测提供了便利,Ding 等^[16]认为以我国现有 CORS 网的站点密度、 覆盖范围和通讯条件,有能力为未来西部 7 级以上大震预警和应急救援提供震源快速(震后 数分钟内)测定服务。

那么对于低于 7 级的地震,如此次积石山 6.2 级地震,如何利用现有海量 CORS 站实时 数据监测地震准实时形变,将是本文的研究重点。本文整理了研究区域现有 CORS 站资源, 收集了不同系统 32 个 CORS 站地震当天的高频 GNSS 观测数据,对原始数据首先开展了质 量分析,梳理可用的观测数据,再对观测数据进行高精度处理,提取了可靠的同震形变成果, 最后基于模态分解方法提取了高频同震信号,为利用海量 CORS 站高频数据开展 6 级以上 地震破裂监测提供解决方案。

1 研究区域基本信息

研究区域位于甘肃省临夏县积石山,处于青藏高原东北缘,祁连山断裂东侧。发震地点周边有兴隆山-马衔山断裂,倒淌河-循化南山断裂,西秦岭北缘断裂,以及拉脊山断裂带(见图1)。拉脊山断裂带是此次地震范围内的主要断裂带,该断裂带主要体现为向北东方向突出的弧形断裂,是左旋走滑的西秦岭北缘断裂和右旋走滑的日月山断裂之间的挤压构造区和构造转换带,也是西宁-民和盆地、循化-化隆盆地以及临夏盆地的重要边界^[22]。拉脊山断裂的活动性质主要以向盆地内的挤压逆冲为主,西段受日月山断裂右旋挤压影响,具有一定的走滑分量。通过地质和大地测量研究表明拉脊山断裂右旋滑动速率为 1~2 mm/a,拉张速率为 2~3 mm/a,不同段落之间存在一定差异性^[23]。基于水准和 GPS 资料的研究结果表明,拉脊山断裂带西段水平运动速率约为 3 mm/a,垂直运动速率约为 1±0.5 mm/a^[24]。历史上沿拉脊山南北两侧发生了 20 余次 5 级左右中等破坏性地震,上一次该区发生的 6 级以上地震为 2013 年的岷县地震^[22]。

积石山地震后通过合作收集了震中附近甘肃省级 CORS 站 4 座、青海省级 CORS 站 4 座、讯腾智慧科技有限公司站点 9 座以及地质环境监测站点 15 座等共计 32 个站点的数据 资源,开展高频 GNSS 地震形变研究,这些站网的相关信息见表 1,具体分布见图 1。根据 表 1 统计信息,可发现因为应用目的不同,CORS 站建设的标准和采用的设备也不尽相同。此外通过收集相关资料,发现在这一区域还有中国移动、千寻位置以及华测公司等 CORS 站 点共计 85 座(图 1 中三角形标记的为本文收集的站点资源,浅黄色正方形标记的为研究区 域其他单位分布的站点)。图 1 中红色区域表示为地震烈度等级,由内往外依次为\ID更、\ID 度、\ID 度,最远距离约距震中 60 km 左右^[26]。图 1 中黑色虚线 50 km 基本与地震烈度重合, 是本文重点研究区域,主要讨论在这个区域 CORS 站监测地震形变的能力是否与地震烈度 一致。另放大 2 倍距离到 100 km 范围,看能否通过一定的技术手段捕捉到同震信号。经统计,在地震发生周边区域,CORS 站点合计 117 座,其中距震中 50 km 范围内有 15 座 CORS 站点,100 km 范围内有 54 座站点,如能统筹更多数据资源,将极大提高对该区域地震形变的监测能力。

图1 地质构造与测站分布图(绿色线条表示发震断层的地表投影线)

Fig.1 Geological structure and distribution of CORS Stations(The green line indicates the surface projection line of the seismogenic fault)

表1 本文所用 CORS 站系统基本情况表

```
Tab. 1 Basic information of the CORS station system used in this paper
```

序号	站点类型	站点数量	建设运行单位	接 收 机 型 号 (地震区域)	主要用途	技术特征	备注
1	基岩/土层	139	甘肃省测绘工程院	Trimble R9	省级 CORS 服务	实时 RTK	覆盖本省
2	基岩土层	114	青海省基础测绘院	Trimble R9	省级 CORS 服务	实时 RTK	覆盖本省
3	楼顶/土层	超2 500	北京讯腾智慧科技有 限公司	CHC P5U	燃气泄漏检测	实时	覆盖全国
4	标准观测墩/混凝 土墩/钢结构等	超5万	中国地质环境监测院	NOV 0EM729- 2.03	地质滑坡等灾害 监测	实时	覆盖全国

- 2数据处理与分析
- 2.1 原始数据分析

根据表1信息,可知甘肃、青海两省 CORS 站建设的观测墩均为地面土层或基岩墩,其 参照了国家相关标准建设,采集数据的设备为 Trimble R9。讯腾公司建设的站点观测墩大部 分为楼顶墩,也有部分土层墩,震区周边站点的采集设备为 CHC P5U。服务地质灾害监测 的基准站参考了省级 CORS 站的建设标准,观测墩结构包括标准观测墩、混凝土墩和钢结 构等,震区周边站点的采集设备为 NOV OEM729-2.03。总体而言省级 CORS 建设的标准要 高于讯腾公司和地质灾害监测的站点。考虑到数据来源、设备型号、站点用途以及地质基础 等不同,可能会影响原始观测数据的质量,导致同震形变结果不可靠,因此本文首先采用自 研软件对 32 个原始观测数据进行了质量检查与分析,包括数据可利用率,多路径和周跳比 等。质量检查结果表明不同系统建设的站点,在数据采集功能上,水平已基本相当,在数据 观测质量上看不出明显差别。

为方便统计哪些测站能监测到同震形变,本文对所有采集的数据还进行了站点代码、震中距、震中方位信息以及所属位置等信息统计,按照距离震中位置远近顺序排序,具体信息见表2(为节省篇幅,本文仅列出本文后续章节使用站点的基本统计信息)。从表2可以看出,距离震中方位东、南、西、北4个方向,不同方位的CORS站点均能捕获到同震形变。表2所列站点分属不同系统建设,相比较地震引发的比较大的形变,讯腾公司和地质灾害监测的站点因为建设标准不如省级 CORS 站带来的影响几乎可以忽略不计,因此在未来,一些低标准建设的 CORS 站(或者类似的监测站点)完全可用于同震形变监测与分析工作。表2站点距震中距离与方位信息

序号	站点代码	震中距离/km	距震中方位	位置	来源
1	LXJS	5	震中附近	甘肃	甘肃省 CORS
2	GUTI	18	正北方向	青海	青海省 CORS
3	LXYJ	31	近东方向	甘肃	甘肃省 CORS
4	QHLH	33	西北方向	青海	讯腾智慧公司
5	XUNH	35	东北方向	青海	青海省 CORS
6	GSMA	36	东南方向	甘肃	讯腾智慧公司
7	gsl9	42	东南方向	甘肃	地质灾害监测站
8	QHMH	63	西北方向	青海	讯腾智慧公司
9	QHHL	65	西北方向	青海	讯腾智慧公司
10	GSXA	78	西南方向	甘肃	讯腾智慧公司
11	GSLA	82	东北方向	甘肃	讯腾智慧公司
12	lzan	91	东北方向	甘肃	地质灾害监测站
13	QHGO	99	西北方向	青海	讯腾智慧公司

Tab.2 Distance and azimuth information between stations and epicenter

2.2 数据处理

本文利用武汉大学研发的 Pride 3.0 软件对收集到的 CORS 站高频数据进行高精度动态 解算,该软件基于 PPP-AR 技术,可以获取高频数据的单历元解^[27]。数据解算采用动态处理 模式,采样率设置为 1 s,截止高度角为 7°,采用武汉大学发布的精密轨道、钟差产品以及 电离层改正、伪距偏差改正产品,对 GPS\BDS\Galileo 三系统观测数据进行了处理,基于非 差非组合模型进行平差获得最终计算结果,各类表文件以及接收机和卫星天线相位中心模型 产品均来自 IGS 分析中心提供的最新产品。

本文对收集的 32 个站点数据进行了动态处理的单历元解,图 2(a)给出了有明显同震 形变的站点在发震前后 250 个历元的东/北/垂向 3 个方向的动态变化,主要覆盖范围为图 1 中 50 km 的圆圈内,与地震烈度结果基本一致。图 2(a)显示地震发生后距震中 25 km 范 围内的 LXJS 和 GUTI 测站,完整清晰地记录到了地震引起的瞬时变形。距震中 5 km 的 LXJS 测站东西向瞬时位移约 35 mm,南北向瞬时位移约为 50 mm;距离震中 23 km 的 GUTI 测站东西向瞬时位移约为 65 mm,南北向瞬时位移约为 60 mm。从高频信号反映的变形来看,位于地震左上方的 GUTI 测站监测到的瞬时变形明显要大于距离震中约 5 km 的 LXJS 测站,反映了地震破裂主要向西北方向传递,这与地震波反演的结果基本一致^[3]。距离震中 36 km 的 LXJS 测站,35 km 的 XUNH 测站和 42 km 的 gsl9 测站也不同程度监测到了地震波的信号,地震波形出现了较明显的瞬时变化,但并未造成明显的永久变形。在垂向变化上,此次也监测到了相对明显的变化,说明此次地震除了有走滑分量之外,也有逆冲信号,这与已有的结果基本保持一致。图 2 (b)主要为距离震中 50~100 km 范围的 CORS 站点的高频变化,尽管能看出有一定的同震形变,但是量级较小,与解算精度相当,可认为是误差或者噪声,无法获得量化的同震形变。

图 2 同频 GNSS 观频的平均九解 Fig.2 Single epoch solution for high-frequency GNSS observations

2.3 同震形变提取

GNSS 观测到的瞬时形变反映了台站接收到的地震的波动信号,并不能真正反映地震区 域永久形变,因此需从高频 GNSS 动态序列中提取同震形变。采用方法与参考文献[13]类似, 首先剔除发震时刻变化较大的动态解,保留发震前后比较平滑的单历元结果,分别选择地震 前后各 100 个历元,计算地震前后坐标平均值,再由震后平均值减去震前平均值即可得到较 可靠的同震形变(见表 3);至于误差计算,则以地震前后各自平均值为真值,以地震前后 100 个历元分别减去对应的真值,取差值平方和除以 n-1 (n=100)再开方,就可计算出地震 前后统计的各自中误差,再根据误差传播定律,可计算出同震形变的中误差。表 3 说明高频 GNSS 观测的同震形变在水平方向上误差相对较小,可靠性略高;垂向误差较大,可靠性较 差,这可能与本次地震震级较小有关。距离震中最近的 LXJS 站点精度计算较高,说明结果 比较可靠,该站点发生永久性的东向形变 13.6±2.5 mm,北向形变-10.9±5.1 mm,垂向形 变 8.6±6.4 mm。GUTI、LXYJ、XUNH、gsl9 等站点发生的永久变形较小,可靠性不是很 高。图 3 给出了图 2 (a) 中 5 个站点计算的水平变形和垂向变形以及各自误差椭圆(置信 度仅为 35%),可看出除 LXJS 计算的精度尚可外,其他计算的同震形变误差都比较大,说 明解算结果还存有较大的噪声,需考虑研究其他方法降低噪声,提高同震形变计算精度。 表 3 高频 GNSS 同震永久位移

			•	•	e 1	•			
站点什	計占代码	G 由 (○)	ッ) 纬度/(ッ)	东向形变	北向形变	垂向形变	东 向 误 差	北向误差	垂 向 误 差
	站总代码 "	空度/()		/mm	/mm	/mm	/mm	/mm	/mm
	LXJS	102.853	35.702	13.6	-10.9	8.6	2.6	5.1	6.4
	GUTI	102.841	35.905	4.6	-1.4	-0.8	4.3	6.9	1.7
	LXYJ	103.134	35.879	1.4	0.1	-1.2	6.8	5.1	3.2
	XUNH	102.457	35.854	-0.5	4.2	-5.9	5.2	7.9	11.5
	gsl9	103.230	35.555	1.4	-1.0	0.6	1.3	5.6	4.4

Tab.3 Co-seismic permanent displacement from high frequency GNSS

图 3 高频 GNSS 观测的永久同震形变场(左图箭头代表水平形变,右图箭头代表垂向形变,箭头的误差椭圆置信度为 35%,红色五角星表示震中,灰色线条表示断裂带)

Fig. 3 Permanent co-seismic deformation field observed by high-frequency GNSS (The left arrow represents the horizontal deformation and the right arrow represents the vertical deformation with the 35% error ellipses confidence. The red pentagram represents epicenter; gray line represents fault zone)

3 高频 GNSS 同震信号模态分解

3.1 分解方法

针对图 2 中高频 GNSS 信号弱,无法探测和提取高频同震形变的问题,本文研究利用模态分解方法来探测同震形变信号,为提取高可靠同震形变做准备。模态分解方法可对非平稳、非线性信号进行自适应的分解,用于识别及提取井水位观测数据中同震响应信息^[28],也被用于重力潮信号的提取^[29]。相比较地下水位记录数据,高频 GNSS 结果也是一个非平稳、非线性信号,因此可尝试利用模态分解方法来分离高频地震信号。本文主要采用了自适应噪声完全集合经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)方法来探测高频同震信号的可行性,该方法由 Mar á E. Torres 等针对经验模态分解(empirical mode decomposition,EMD)方法存在模态混叠问题,集合经验模态分解方法(ensemble EMD,EEMD)和互补集合经验模态分解(complementary EEMD,CEEMD) 分解方法存在白噪声残留问题,提出的一种改进算法^[30]。该方法从两个方面对以上问题进行 解决: (1)不直接将高斯白噪声信号加入到原始信号中,而是将 EMD 分解后含有辅助噪声的内涵模态分量(intrinsic mode functions,IMF)分量加入; (2) CEEMDAN 方法在获得第一个 IMF 分量后立即计算总体均值,获得最终的 IMF1 分量,接着对剩余部分重复进行以上操作,相对于 EEMD 和 CEEMD 方法将经验模态分解后再进行总体平均的处理,该方法有效的解决了白噪声从高频到低频的转移传递问题^[31]。徐华明等人使用 CEEMDAN 分解方法对采样率为 1 Hz 的边坡变形监测 GNSS 数据进行了去噪研究,结果表明,相对于 EMD 去噪方法,该方法的去噪结果相关系数和信噪比更大,均方根误差更小,去噪效果更好^[32]。

3.2 分解结果与分析

本文选取积石山地震同震位移时间序列通过 CEEMDAN 方法进行同震信号分解,噪声系数 设定为 0.2, 噪声添加次数为 500, 最大迭代次数设置为 5 000 次, 信号分解后采用文献[33] 提出的多尺度排列熵(multiscale permutation entropy, MPE)方法对信号频带进行分组。 由于篇幅限制,本文仅选取 LXJS 和 lzan 两个站点 E 方向的时间序列作为说明。首先对距 离震中 5 km 的 LXJS 站点的高频时间序列进行分解,共得到 12 个信号分量,如图 4 (a) 所 示,其中前11个时间序列为IMF分量,第12个时间序列RES为残余分量。随着对信号分 解次数增加,信号变得更平滑,频率也越来越低。通过 MPE 法确定 IMF1-4 为高频分量,其 中 IMF1 分量主要包含白噪声,但还是分辨出了1次高频事件,其原因可能是该站点距离震 中较近,受到地震影响较大; IMF2 分量可明显检测到 1 个高频事件,通过与 LXJS 时间序 列对比可知,该事件是由积石山地震引起, IMF3 和 IMF4 分量对此次高频事件的分辨率逐 渐变差; IMF5-IMF9 分量存在明显周期性变化, 文献[29]指出这样的周期变化, 主要是由固 体潮变化引起,因此可使用该频带信息进行固体潮的相关研究: IMF10 和 IMF11 分量主要 包含的是低频的变化信息; RES 分量为残余项。再对距离震中 91 km 的 lzan 站的 E 方向高 频时间序列进行模态分解,如图4(b)所示,由于该站点距离震中较远,高频 GNSS 的同 震位移波形已经很难看出明显的地震事件,包括 IMF1 分量也未见地震信号,但 IMF2 分量 仍然能探测到一个明显的高频突变信号,通过与 LXJS 站点的结果进行比对,可确定该事件 是由此次地震造成。该示例说明采用 CEEMDAN 方法进行高频 GNSS 信号分解,可探测到 远场 CORS 站点的同震记录。

图 4 积石山地震东方向 CEEMDAN 分解结果(红色虚线表示发震时刻) Fig.4 CEEMDAN decomposition results of the Jishishan earthquake on the eastward direction (red dashed lines indicating the time of earthquake occurrence)

利用此方法共检测到 13 个 CORS 站在 E 方向或 N 方向上,对此次地震有较为明显的 响应,如图 5 所示。在 50 km 范围内探测到 7 个站点有强烈的同震变形信号,依照距离远近 分别为 LXJS、GUTI、LXYJ、QHLH、XUNH、GSMA 和 gsl9 等 7 个 CORS 站,包括 2 个 甘肃省 CORS 站、2 个青海省 CORS 站和 2 个讯腾公司 CORS 站和 1 个地质环境监测站, 说明 4 家单位的站点均能探测到明显同震信号。在距离震中 63 km 的 QHMH 测站,探测到 其在 E 方向同震响应非常剧烈,经检查发现该站点位于震中的西北方向,与 GUTI 测站位于 同一个方位(见图 1)。猜测可能是该站点位于地震破裂的传播方向上,使得该站点出现较 大的同震响应,而该响应在原始的高频 GNSS 波形序列中表现的并不明显,也验证了此次地 震的破裂主要由震中向西北方向传播^[3],这个现象也与地震烈度的分布结果基本保持一致 (图 1)。

从 60 km 开外的 QHHL、GSXA、GSLA、lzan 站到接近 100 km 的 QHGO 站,也均探 测到较明显同震信号。图 5 说明采用模态分解方法可探测到距离震中 100 km 的 CORS 站点 的同震信号,相比较原始观测数据解算的高频单历元时间序列无法探测同震信号,利用该方 法可以探测出更远距离的同震信号。因此将来可采用此方法,对波形信号进行重构,通过剔 除噪声信号,获得更可靠的同震形变信息,拓展 CORS 站监测同震信号的距离和范围,从而

能更大程度利用地震周边 CORS 站,获得更多站点同震形变信息,进而为研究地震破裂机制、断层滑动分布等提供更多、更有用的观测信息。

4 结 语

对于 2023 年 12 月 18 日发生的甘肃积石山 6.2 级地震,本文梳理了研究区域现有 CORS 站资源,收集了不同系统 32 个 CORS 站地震当天高频 GNSS 观测数据,对原始数据开展了 质量分析和高精度处理,提取了可靠同震形变成果,再基于模态分解方法研究了探测高频同 震信号的可行性。取得的研究成果主要如下:

1)对研究区域不同单位 CORS 站点类型设备的原始观测数据进行了质量检查和高精度数据处理,发现不同类型观测墩上的观测设备均能不同程度监测到地震信号,因此将来可集中国内众多 CORS 站资源,开展地震同震形变监测与研究。

2) 高频 GNSS 可监测到明显同震形变波形,其中 GUTI 和 LXJS 站记录的同震信号最为明显,峰值变化达到 50~60 mm;随着震中距离的增加,同震信号逐渐淹没到噪声当中,捕捉到同震信号的距离范围大致在 50 km 以内,与地震烈度结果基本一致;

3)本次地震永久变形主要影响范围为距离震中 30 km 的区域,位于震中东南侧 5 km 的 LXJS 测站具有最大同震形变,其东西向永久变形达到 13 mm,南北向变形达到 10 mm,以 及 8 mm 的垂向变形,证明本次地震不仅有走滑运动,还有逆冲运动。

图 5 积石山地震各站点 IMF2 分量,黑色虚线表示发震时刻

Fig. 5 IMF2 components at various stations of the Jishishan earthquake, with black dashed lines indicating the time of earthquake occurrence

4) 采用 CEEMDAN 方法进行高频 GNSS 信号分解,可探测到 50km 范围内 CORS 站点 的同震记录,最远可探测到距离震中 100km 的 CORS 站点同震信号。相比较原始观测数据 解算的高频单历元时间序列无法探测远场同震信号,利用该方法可探测出更多同震信号,为 将来利用海量 CORS 站资源监测地震的同震形变提供可行性。

参考文献

- [1] The 6.2 magnitude earthquake in Jishishan County, Linxia Prefecture, Gansu Province [EB/OL].
 https://news.ceic.ac.cn/CC20231218235930.html, (2024-01-05) (中国地震台网中心 甘肃临夏州积石山县 6.2 级地震[EB/OL]. (2024-01-05) https://news.ceic.ac.cn/CC20231218235930.html)
- [2] Chen Jifeng, Lin Xiangdong, He Xinshe. Moment Tensor Inversion and Seismogenic Tectonics of the 2013 Minxian M_S6.6 Earthquake in Gansu[J]. China Earthquake Engineering Journal,2013,35(3):425-431. (陈继 锋,林向东,何新社.2013 年甘肃岷县 M_S6.6 地震矩张量反演及发震构造初探[J].地震工程学 报,2013,35(3):425-431.)
- [3] Brief report on scientific and technological support for the 6.2 magnitude earthquake in Jishishan County, Linxia Prefecture, Gansu Province on December 18, 2023 [EB/OL] https://www.cea-igp.ac.cn/kydt/ 280418.html, (2023-12-19) (中国地震局地球物理研究所 2023 年 12 月 18 日甘肃临夏州积石山县 6.2 级地震科技支撑简报[EB/OL]. (2023-12-19) https://www.cea-igp.ac.cn/kydt/ 280418.html)
- [4] Wang Qincai, Luo Jun, Chen Hanlin, et al. Focal Mechanism for the December 18, 2023, Jishishan Ms6.2 Earthquake in Gansu Province[J]. Earthquake, 2024, 44(1). (王勤彩, 罗钧, 陈翰林, 等.2023 年 12 月 18 日甘肃积石山 6.2 级地震震源机制解[J].地震, 2024,44(1).)
- [5] Huang Guanwen, Jing Ce, LI Dongxu, et al. Deformation Analysis of Jishishan Mw6.2 Earthquake on the Landslide Hazard Areas[J/OL]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230490(黄观文,景策,李东旭,等.甘肃积石山 6.2级地震对滑坡易发区的变形影响分析 [J/OL].武汉大学学报(信息科学版):1-15[2024-01-04].https://doi.org/10.13203/j.whugis20230490.)
- [6] Chen Bo, Song Chuang, Chen Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J/OL]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/J.whugis20230497 (陈博,宋闯,陈毅, 等.2023 年甘肃积石山 Ms 6.2 地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J/OL].武汉大学 学报(信息科学版):1-16[2024-01-04].https://doi.org/10.13203/J.whugis20230497.)
- [7] Wang Lichao, Hou Shengshan, Dong Ying, et al. Basic Characteristics of Co-seismic Geological Hazards Induced by Jishishan Ms6.2 Earthquake and Suggestions for Their Risk Control[J]. The Chinese Journal of Geological Hazard and Control,2023,35: 1-12 doi:10.16031/j.cnki.issn.1003-8035.202312026 (王立朝,侯圣山,董英,等.甘 肃积石山 Ms 6.2 级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2023,35:1-12 doi:10.16031/j.cnki.issn.1003-8035.202312026)
- [8] Wan Yongge, Wan Yongkui, Jin Zhitong, et al. Rupture Distribution of The 1976 Tangshan Earthquake Sequence Inverted from Geodetic Data[J]. Chinese Journal of Geophysics (in Chinese), 2017,60(9): 3378-3395. (万永革, 万永魁,靳志同,等.用形变资料反演 1976 年唐山地震序列的破裂分布[J].地球物理学报, 2017,60(9):3378-3395.)
- [9] Wan Yongge, Wang Min, Shen Zhengkang, et al. Co-seismtic Slip Distribution of The 2001 West of Kunlun Mountain Pass earthquake Inverted by GPS and Leceling data[J]. Seismology and Geology, 2004, 26(3): 393-404. (万永革,王敏,沈正康,等. 利用 GPS 和水准测量资料反演 2001 年昆仑山口西 8.1 级地震的同震滑 动分布[J]. 地震地质, 2004, 26(3): 393-404.)
- [10] Li Zhicai, Zhang Peng, Jin Shuanggen, et al. Deformation Fault Inversion and Analysis Based on GPS Observations[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2): 108-113+119. (李志才,张鹏,金双根,等.基于 GPS 观测数据的汶川地震断层形变反演分析[J].测绘学报, 2009, 38(2): 108-113+119.)
- [11] Jiang Z, Wang M, Wang Y, et al. GPS constrained coseismic source and slip distribution of the 2013 Mw6. 6 Lushan, China, earthquake and its tectonic implications[J]. Geophysical Research Letters, 2014, 41(2): 407-413.

- [12] Li, Z, Wen, Y, Zhang, P, et al. Joint Inversion of GPS, Leveling, and InSAR Data for The 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications. Remote Sens. 2020, 12, 715; doi:10.3390/rs12040715
- [13] Li Zhicai, Ding Kaihua, Zhang Peng, et al. Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1489-1497. (李志才,丁开华,张鹏,等.GNSS 观测的 2021 年青海玛多地震(Mw 7.4) 同震形变及其滑动分布[J].武汉大学学报(信息科学版),2021,46(10):1489-1497.)
- [14] Wu Weiwei, Meng Guojie, Liu Tai, et al. Coseismic Displacement Field and Slip Distribution of the 2022 Luding M6.8 Earthquake Derived from GNSS Observations. Chinese Journal of Geophysics (in Chinese), 2023,66(6): 2306-2321.(吴伟伟,孟国杰,刘泰,等.2022 年泸定 6.8 级地震 GNSS 同震形变场及其约束反演 的破裂滑动分布[J].地球物理学报,2023,66(6):2306-2321.)
- [15] Wright T J, Houli éN, Hildyard M, et al. Real time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku Oki (Japan) earthquake[J]. Geophysical research letters, 2012, 39(12): L12302.
- [16] Kaihua Ding, Qi Wang, Zhicai Li, Ping He, Peng Zhang, Jianfeng Chen, Xinzhao You, Lijiang Zhao; Rapid Source Determination of the 2021 Mw 7.4 Maduo Earthquake by a Dense High - Rate GNSS Network in the Tibetan Plateau. Seismological Research Letters 2022; doi: https://doi.org/10.1785/0220210307
- [17] Zang J, Wen Y, Li Z, et al. Rapid source models of the 2021 Mw 7.4 Maduo, China, earthquake inferred from high-rate BDS3/2, GPS, Galileo and GLONASS observations. Journal of Geodesy, 2022, 96(9), doi:10.1007/s00190-022-01641-w
- [18] Li, Z.; Zang, J.; Fan, S.; et al. Real-Time Source Modeling of the 2022 Mw 6.6 Menyuan, China Earthquake with High-Rate GNSS Observations[J]. *Remote Sens*, 2022, 14, 5378. https://doi.org/10.3390/ rs14215378
- [19] Zheng Jiawei, Li Min, Fang Rongxin, et al. Rapid inversion of fault rupture characteristics for the Luding M6.8 earthquake in Sichuan with high-rate GNSS and strong-motion data. Chinese Journal of Geophysics (in Chinese), 2023,66(4): 1419-1427.(郑佳伟,李敏,方荣新,等.联合高频 GNSS 和强震数据快速反演四川泸定 6.8 级地 震断层破裂特征[J].地球物理学报,2023,66(4):1419-1427.)
- [20] Xiong Wei.Construction and application of satellite navigation and positioning reference stations in major countries and regions of the world[J].Development trends of surveying,mapping and geographic information, 2023,https://www.drcmnr.com/fzyjdt/2586.jhtml. (熊伟. 世界主要国家和地区卫星导航定位基准站建设与 应用有关情况[J]. 测绘地理信息发展动态, 2023,https://www.drcmnr.com/fzyjdt/2586.jhtml.)
- [21] Zhang Mingzhi, Yang Fei, Ma Juan, et al. Exploration of blockchain technology application in the construction of National Risk Warning System on Landslides[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 168-174.(张鸣之,杨飞,马娟,等.区块链技术在全国地质灾害风险预警系统建设中的应用探索[J].水文地质工程 地质,2023,50(6):168174.)
- [22] Li Zhiming, Tian Qinjian, Tu Hongwei. Remote Sensing Characteristics of Lajishan Fault[J]. Plateau Earthquake Research,2009,21(1):26-31. (李智敏,田勤俭,屠泓为.拉脊山断裂带遥感特征研究[J].高原地 震,2009,21(1):26-31.)
- [23] Xu Huachao, Wang Hui, Cao Jianling. Slip Rates of the Major Faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications[J].Earthquake, 2018,38(3):13-23. (徐化超,王辉,曹建玲.青藏高原东北缘主要断裂滑动速率及其动力学意义[J].地震,2018,38(3):13-23.)
- [24] Zhou Lin, Wang Qingliang, Li Zhangjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. JGG, 2016, 36(12): 1056-1060. (周琳,王庆良,李长军,等.基于 GPS 和水准资料的拉脊山断裂带西段地壳形变研究[J].大地测量与地球动力学,2016,36(12):1056-1059.)

- [25] Zheng W J, Yuan D Y, He W G, et al. Geometric pattern and active tectonics in Southeasten Gansu province, Discusion onseismogenic mechanism of the Minxiar-Zhangxian M,6.6 earthquake on July 22,2013. Chinese J. Geophys, 2013, 56(12):4058-4071. (郑文俊,袁道阳,何文贵,等.甘肃东南地区构造活动与 2013 年 岷县—漳县 M S6.6 级地震孕震机制[J].地球物理学报, 2013, 56(12):4058-4071.)
- [26] The Ministry of Emergency Management has issued a 6.2 magnitude earthquake intensity report for the Jishishan earthquake in Gansu Province [EB/OL] http://mem.gov.cn/xw/yjglbgzdt/202312/t20231222_ 472849.shtml, (2023-12-22) (应急管理部发布甘肃积石山 6.2 级地震烈度图[EB/OL]. (2023-12-22) http://mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml)
- [27] Geng J, Yang S, Guo J. Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR. Satellite Navigation, 2021, 2(1):1-15.
- [28] Sun Heping, Zhang Miaomiao, Xu Jianqiao, et al. Etraction and Study of the Gravity Pole Tide Using EEMD. Chinese Journal of Geophysics, 2018, 61(2): 521-530. (孙和平,张苗苗,徐建桥,等.基于集合经验模态分解法 的重力极潮提取与研究[J].地球物理学报, 2018, 61(2): 521-530.)
- [29] Yu Dan, LIU Chunguo, Wang Xiao, et al. Application of Ensemble Empirical Mode Decomposition(EEMD) in Underground Fluid Data Processing[J].Earthquake Research In CHINA,2019,35(2):337-346. (余丹,刘春国, 王晓,等. 集合经验模态分解(EEMD)在地下水位数据处理中的应用初探[J].中国地震,2019,35(2):337-346.)
- [30] Torres, María Eugenia et al. "A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ,2011: 4144-4147.
- [31] Liang Aquan, Gao Shuangling. Application of CEEMDAN and Wavelet Packet Analysis in Noise Reduction of Seismic Signals[J]. Seismological and Geomagnetic Observation and Research, 2023,44(5):29-36. (梁阿全, 高双玲. CEEMDAN 和小波包方法在地震信号降噪中的应用[J].地震地磁观测与研究,2023,44(5):29-36.)
- [32] Xu Huaming, Meng Feifei, Yu Chunyan. Denoising Method for Slope GNSS Deformation Monitoring data[J]. Geomatics Technology and Equipment,2023,25(3):31-36. (徐华明,孟飞飞,俞春燕. 边坡 GNSS 变形监测数 据去噪方法研究[J].测绘技术装备,2023,25(3):31-36.)
- [33] Ma Xiaoyan, Wang Wenbo. Partial Discharge Recognition Based on Synchrosqueezing Wavelet transform and Multi-scale Permutation Entropy[J]. Computer Measurement & Control,2020,28(2):131-135. (马晓燕,王文波. 联合同步挤压小波变换和多尺度排列熵的局部放电类型识别[J]. 计算机测量与控制,2020,28(2):131-135.)