[1] 李永宁,张宾兰,秦淑英,等. 郁闭度及其测定方法研究与应用[J]. 世界林业研究, 2008, 21(1): 40-46 https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY200801006.htm

Li Yongning, Zhang Binlan, Qin Shuying, et al. Review of Research and Application of Forest Canopy Closure and Its Measuring Methods[J]. World Forestry Research, 2008, 21(1): 40-46 https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY200801006.htm
[2] 杜文峰,王凤臻,李庆. 提高郁闭度调查精度的几点建议[J]. 林业资源管理, 1999(3): 62-63 doi:  10.3969/j.issn.1002-6622.1999.03.017

Du Wenfeng, Wang Fengzhen, Li Qing. Some Suggestion for Improving the Accuracy of Forest Crown Closure Measurement[J]. Forest Resources Management, 1999(3): 62-63 doi:  10.3969/j.issn.1002-6622.1999.03.017
[3] 牛战勇,冯娟,谷建才,等. 基于叶面积指数的森林郁闭度遥感反演研究[J]. 林业资源管理, 2014(1): 46-51 https://www.cnki.com.cn/Article/CJFDTOTAL-LYZY201401010.htm

Niu Zhanyong, Feng Juan, Gu Jiancai, et al. Forest Canopy Density RS Inversion Research Based on LAI[J]. Forest Resources Management, 2014(1): 46-51 https://www.cnki.com.cn/Article/CJFDTOTAL-LYZY201401010.htm
[4] 刘赛赛,陈冬花,栗旭升,等. 基于高分一号PMS的新疆落叶松林分郁闭度遥感定量估测[J]. 西北农林科技大学学报(自然科学版), 2020, 48(7): 57-66 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY202007008.htm

Liu Saisai, Chen Donghua, Li Xusheng, et al. Quantitative Estimation of Stand Closure Density of Larix Sibirica by Remote Sensing Based on GF-1 PMS[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(7): 57-66 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY202007008.htm
[5] 谭炳香,李增元,陈尔学,等. Hyperion高光谱数据森林郁闭度定量估测研究[J]. 北京林业大学学报, 2006, 28(3): 95-101 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200603017.htm

Tan Bingxiang, Li Zengyuan, Chen Erxue, et al. Estimating Forest Crown Closure Using Hyperion Hyperspectral Data[J]. Journal of Beijing Forestry University, 2006, 28(3): 95-101 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200603017.htm
[6] 庞勇,李增元,陈尔学,等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3): 129-136 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200503023.htm

Pang Yong, Li Zengyuan, Chen Erxue, et al. LiDAR Remote Sensing Technology and Its Application in Forestry[J]. Scientia Silvae Sinicae, 2005, 41(3): 129-136 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200503023.htm
[7] 段祝庚,赵旦,曾源,等. 基于遥感的区域尺度森林地上生物量估算研究[J]. 武汉大学学报·信息科学版, 2015, 40(10): 1400-1408 doi:  10.13203/j.whugis20140709

Duan Zhugeng, Zhao Dan, Zeng Yuan, et al. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1400-1408 doi:  10.13203/j.whugis20140709
[8]

Liu Q W, Fu L Y, Wang G X, et al. Improving Estimation of Forest Canopy Cover by Introducing Loss Ratio of Laser Pulses Using Airborne LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 567-585
[9]

Stojanova D, Panov P, Gjorgjioski V, et al. Estimating Vegetation Height and Canopy Cover from Remotely Sensed Data with Machine Learning[J]. Ecological Informatics, 2010, 5(4): 256-266
[10]

Ahmed O S, Franklin S E, Wulder M A. Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(10): 953-961
[11]

Korhonen L, Ali-Sisto D, Tokola T. Tropical Forest Canopy Cover Estimation Using Satellite Imagery and Airborne LiDAR Reference Data[J]. Silva Fennica, 2015, 49(5): 1-18
[12] 张瑞英,庞勇,李增元,等. 结合机载LiDAR和LANDSAT ETM+数据的温带森林郁闭度估测[J]. 植物生态学报, 2016, 40(2): 102-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201602002.htm

Zhang Ruiying, Pang Yong, Li Zengyuan, et al. Canopy Closure Estimation in a Temperate Forest Using Airborne LiDAR and LANDSAT ETM+ Data[J]. Chinese Journal of Plant Ecology, 2016, 40(2): 102-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201602002.htm
[13] 郭丽丽,丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5): 28-33 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201505007.htm

Guo Lili, Ding Shifei. Research Progress on Deep Learning[J]. Computer Science, 2015, 42(5): 28-33 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201505007.htm
[14] 张立强,李洋,侯正阳,等. 深度学习与遥感数据分析[J]. 武汉大学学报·信息科学版, 2020, 45(12): 1857-1864 doi:  10.13203/j.whugis20200650

Zhang Liqiang, Li Yang, Hou Zhengyang, et al. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864 doi:  10.13203/j.whugis20200650
[15] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm

Zhou Feiyan, Jin Linpeng, Dong Jun. Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
[16]

Ayrey E, Hayes D. The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory[J]. Remote Sensing, 2018, 10(4): 649
[17]

Dong L F, Du H Q, Han N, et al. Application of Convolutional Neural Network on Lei Bamboo Above-Ground-Biomass (AGB) Estimation Using Worldview-2[J]. Remote Sensing, 2020, 12(6): 958
[18]

Shah S A A, Manzoor M A, Bais A. Canopy Height Estimation at Landsat Resolution Using Convolutional Neural Networks[J]. Machine Learning and Knowledge Extraction, 2020, 2(1): 23-36
[19]

Längkvist M, Kiselev A, Alirezaie M, et al. Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks[J]. Remote Sensing, 2016, 8(4): 329
[20]

Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, DOI: 10.1109/cvpr.2015.7298965
[21] 章琳,袁非牛,张文睿,等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56(1): 25-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202001004.htm

Zhang Lin, Yuan Feiniu, Zhang Wenrui, et al. Review of Fully Convolutional Neural Network[J]. Computer Engineering and Applications, 2020, 56(1): 25-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202001004.htm
[22]

Cao K L, Zhang X L. An Improved Res-UNet Model for Tree Species Classification Using Airborne High-Resolution Images[J]. Remote Sensing, 2020, 12(7): 1128
[23]

Pan Z K, Xu J S, Guo Y B, et al. Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net[J]. Remote Sensing, 2020, 12(10): 1574
[24] 王雅慧,陈尔学,郭颖,等. 高分辨率多光谱遥感影像森林类型分类深度U-net优化方法[J]. 林业科学研究, 2020, 33(1): 11-18 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKX202001002.htm

Wang Yahui, Chen Erxue, Guo Ying, et al. Deep U-Net Optimization Method for Forest Type Classification with High Resolution Multispectral Remote Sensing Images[J]. Forest Research, 2020, 33(1): 11-18 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKX202001002.htm
[25]

Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. arXiv, 2015, DOI:  1502.031677
[26] 许玥,冯梦如,皮家甜,等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10): 2905-2914 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201910020.htm

Xu Yue, Feng Mengru, Pi Jiatian, et al. Remote Sensing Image Segmentation Method Based on Deep Learning Model[J]. Journal of Computer Applications, 2019, 39(10): 2905-2914 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201910020.htm
[27]

Draper N R, Smith H. Applied Regression Analysis[M]. Hoboken, USA: John Wiley & Sons Inc., 1998
[28]

Clark. Basic Statistics[M]// Hoboken, USA: John Wiley & Sons Inc., 2008
[29] 穆喜云,张秋良,刘清旺,等. 基于机载LiDAR数据的林分平均高及郁闭度反演[J]. 东北林业大学学报, 2015, 43(9): 84-89 https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201509017.htm

Mu Xiyun, Zhang Qiuliang, Liu Qingwang, et al. Inversion of Forest Height and Canopy Closure Using Airborne LiDAR Data[J]. Journal of Northeast Forestry University, 2015, 43(9): 84-89 https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201509017.htm
[30] Chang Kang-tsung. 地理信息系统导论[M]. 北京: 科学出版社, 2003

Chang Kang-tsung. Introduction to Geographic Information Systerm[M]. Beijing: Science Press, 2003
[31]

Breiman L. Using Iterated Bagging to Debias Regressions[J]. Machine Learning, 2001, 45(3): 261-277
[32]

Jog A, Carass A, Roy S, et al. Random Forest Regression for Magnetic Resonance Image Synthesis[J]. Medical Image Analysis, 2017, 35: 475-488
[33]

Wang C Y, Yu Y C. Growing Season Variations of Soil Detachment Under Wheatgrass and Switchgrass Lands in the Loess Area of China[J]. Chinese Journal of Soil Science, 2016, 47(4): 790-796
[34]

Chen Y B, Xu P, Chu Y Y, et al. Short-Term Electrical Load Forecasting Using the Support Vector Regression (SVR) Model to Calculate the Demand Response Baseline for Office Buildings[J]. Applied Energy, 2017, 195: 659-670
[35]

Li J R, Mao X G. Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images[J]. Forests, 2020, 11(5): 597
[36] 李擎,王振锡,王雅佩,等. 基于GF-2号遥感影像的天山云杉林郁闭度估测研究[J]. 中南林业科技大学学报, 2019, 39(8): 48-54 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201908008.htm

Li Qing, Wang Zhenxi, Wang Yapei, et al. Study on Canopy Density Inversion of Picea Schrenkiana Forest Based on GF-2 Remote Sensing Image[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 48-54 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201908008.htm