[1] 杨艳, 贾三满, 王海刚. 北京平原区地面沉降现状及发展趋势分析[J]. 上海地质, 2010, 31(4): 23-28 doi:  10.3969/j.issn.2095-1329.2010.04.005

Yang Yan, Jia Sanman, Wang Haigang. The Status and Development of Land Subsidence in Beijing Plain[J]. Shanghai Geology, 2010, 31(4): 23-28 doi:  10.3969/j.issn.2095-1329.2010.04.005
[2] 刘凯斯. 北京地铁M1/M6沿线区地面沉降演化特征及风险评价[D]. 北京: 首都师范大学, 2018

Liu Kaisi. Evolution Characteristics and Risk Assessment of Land Subsidence in the Area along Beijing Subway M1/M6[D]. Beijing: Capital Normal University, 2018
[3] 段光耀, 刘欢欢, 宫辉力, 等. 京津城际铁路沿线不均匀地面沉降演化特征[J]. 武汉大学学报·信息科学版, 2017, 42(12): 1847-1853 doi:  10.13203/j.whugis20150537

Duan Guangyao, Liu Huanhuan, Gong Huili, et al. Evolution Characteristics of Uneven Land Subsid‍ence Along Beijing-Tianjin Inter-City Railway[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1847-1853 doi:  10.13203/j.whugis20150537
[4] 罗三明, 杜凯夫, 万文妮, 等. 利用PSInSAR方法反演大时空尺度地表沉降速率[J]. 武汉大学学报·信息科学版, 2014, 39(9): 1128-1134 doi:  10.13203/j.whugis20130670

Luo Sanming, Du Kaifu, Wan Wenni, et al. Ground Subsidence Rate Inversion of Large Temporal and Spatial Scales Based on Extended PSInSAR Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1128-1134 doi:  10.13203/j.whugis20130670
[5] 朱邦彦, 姚冯宇, 孙静雯, 等. 利用InSAR与地质数据综合分析南京河西地面沉降的演化特征和成因[J]. 武汉大学学报·信息科学版, 2020, 45(3): 442-450 doi:  10.13203/j.whugis20190081

Zhu Bangyan, Yao Fengyu, Sun Jingwen, et al. Attribution Analysis on Land Subsidence Feature in Hexi Area of Nanjing by InSAR and Geological Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 442-450 doi:  10.13203/j.whugis20190081
[6]

Guo L, Gong H L, Zhu F, et al. Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China[J]. Remote Sensing, 2019, 11‍(10): 1170-1189 doi:  10.3390/rs11101170
[7]

Zhou C D, Lan H X, Gong H L, et al. Reduced Rate of Land Subsidence Since 2016 in Beijing, China: Evidence from Tomo-PSInSAR Using RadarSAT‍-‍2 and Sentinel‍-‍1 Datasets[J]. International Journal of Remote Sensing, 2020, 41(4): 1259-1285 doi:  10.1080/01431161.2019.1662967
[8]

Zuo J J, Gong H L, Chen B B, et al. Time-Series Evolution Patterns of Land Subsidence in the East‍ern Beijing Plain, China[J]. Remote Sensing, 2019, 11(5): 539 doi:  10.3390/rs11050539
[9]

Richman M B. Rotation of Principal Components[J]. Journal of Climatology, 1986, 6(3): 293-335 doi:  10.1002/joc.3370060305
[10]

Lin Y N N, Kositsky A P, Avouac J P. PCAIM Joint Inversion of InSAR and Ground‍-‍Based Geodet‍ic Time Series: Application to Monitoring Magmatic Inflation Beneath the Long Valley Caldera[J]. Geophysical Research Letters, 2010, 37(23): 23301-23305
[11]

Ji K H, Herring T A. Transient Signal Detection Using GPS Measurements: Transient Inflation at Akutan Volcano, Alaska, During Early 2008[J]. Geophysical Research Letters, 2011, 38(6): 6307-6312
[12]

Zhang J P, Zhu T, Zhang Q H, et al. The Impact of Circulation Patterns on Regional Transport Pathways and Air Quality over Beijing and Its Surround‍ings[J]. Atmospheric Chemistry and Physics, 2012, 12(11): 5031-5053
[13] 朱飙, 王振会, 李春华, 等. 江苏雷暴时空变化的气候特征分析[J]. 气象科学, 2009, 29(6): 849-852 doi:  10.3969/j.issn.1009-0827.2009.06.023

Zhu Biao, Wang Zhenhui, Li Chunhua, et al. Anal‍ysis of Climate Spatial‍-‍Temporal Character of Thunderstorm over Jiangsu Province[J]. Scientia Meteorologica Sinica, 2009, 29(6): 849-852 doi:  10.3969/j.issn.1009-0827.2009.06.023
[14]

Neeti N, Eastman J R. Novel Approaches in Extended Principal Component Analysis to Compare Spatio‍-‍Temporal Patterns Among Multiple Image Time Series[J]. Remote Sensing of Environment, 2014, 148: 84-96 doi:  10.1016/j.rse.2014.03.015
[15]

Rudolph M L, Shirzaei M, Manga M, et al. Evolution and Future of the Lusi Mud Eruption Inferred from Ground Deformation[J]. Geophysical Research Letters, 2013, 40(6): 1089-1092 doi:  10.1002/grl.50189
[16]

Lipovsky B. Physical and Statistical Models in Deformation Geodesy [D]. Riverside, USA: University of California, Riverside, 2011
[17]

Chaussard E, Bürgmann R, Shirzaei M, et al. Predictability of Hydraulic Head Changes and Character‍ization of Aquifer‍-‍System and Fault Properties from InSAR-Derived Ground Deformation[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6572-6590 doi:  10.1002/2014JB011266
[18] 吴玉苗. 基于EOF与神经网络的隧道变形监测方法研究[D]. 成都: 西南交通大学, 2014

Wu Yumiao. Investigation on Tunnel Deformation Monitoring Methods Based on the EOF and Neural Network[D]. Chengdu: Southwest Jiaotong University, 2014
[19] 邹正波, 李辉, 吴云龙, 等. 日本Mw 9.0地震震区及其周缘2002-2015年卫星重力变化时空特征[J]. 地震学报, 2016, 38(3): 417-428 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201603009.htm

Zou Zhengbo, Li Hui, Wu Yunlong, et al. Spatial and Temporal Characteristics of Long‍-‍Term Satellite Gravity Change in the Epicenter of Mw 9.0 Japan Earthquake and Its Surrounding Regions[J]. Acta Seismologica Sinica, 2016, 38(3): 417-428 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201603009.htm
[20]

Jiang L, Bai L, Zhao Y, et al. Combining InSAR and Hydraulic Head Measurements to Estimate Aquifer Parameters and Storage Variations of Confined Aquifer System in Cangzhou, North China Plain[J]. Water Resources Research, 2018, 54(10): 8234-8252