[1] Wei F, Min Z, Xu H Z, et al. Sea Level Variations in the South China Sea Inferred from Satellite Gravity, Altimetry, and Oceanographic Data[J]. Science China (Earth Sciences), 2012, 55(10): 1696-1701 doi:  10.1007/s11430-012-4394-3
[2] 王泽民, 张保军, 姜卫平, 等. 联合卫星测高、GRACE、海洋和气象资料研究南海海水质量变化[J]. 武汉大学学报·信息科学版, 2018, 43(4): 571-577 doi:  10.13203/j.whugis20150691

Wang Zemin, Zhang Baojun, Jiang Weiping, et al. Ocean Mass Variations in the South China Sea Inferred from Satellite Altimetry, GRACE, Oceanographic and Meteorological Data[J] Geomatics and Information Science of Wuhan University, 2018, 43 (4): 571-577 doi:  10.13203/j.whugis20150691

Cazenave A, Dominh K, Guinehut S, et al. Sea Level Budget over 2003-2008: A Reevaluation from GRACE Space Gravimetry, Satellite Altimetry and Argo[J]. Global and Planetary Change, 2009, 65 (1/2): 83-88

Wang F W, Shen Y Z, Chen Q J, et al. Reduced Misclosure of Global Sea-Level Budget with Updated Tongji-Grace2018 Solution[J]. Scientific Reports, 2021, 11: 17667 doi:  10.1038/s41598-021-96880-w

Yi S, Sun W K, Heki K, et al. An Increase in the Rate of Global Mean Sea Level Rise Since 2010[J]. Geophysical Research Letters, 2015, 42(10): 3998- 4006 doi:  10.1002/2015GL063902

Dieng H B, Cazenave A, Meyssignac B, et al. New Estimate of the Current Rate of Sea Level Rise from a Sea Level Budget Approach[J]. Geophysical Research Letters, 2017, 44(8): 3744-3751 doi:  10.1002/2017GL073308

Church J A, White N J. A 20th Century Acceleration in Global Sea-Level Rise[J]. Geophysical Research Letters, 2006, 33: L01602

Nicholls R J, Cazenave A. Sea-Level Rise and Its Impact on Coastal Zones[J]. Science, 2010, 328 (5985): 1517-1520 doi:  10.1126/science.1185782
[9] 常乐, 孙文科. 全球及中国近海海平面变化趋势研究进展及展望[J]. 地球与行星物理论评, 2021, 52(3): 266-279 doi:  10.19975/j.dqyxx.2020-028

Chang Le, Sun Wenke. Progress and Prospect of Sea Level Changes of Global and China Nearby Seas [J]. Reviews of Geophysics and Planetary Physics, 2021, 52(3): 266-279 doi:  10.19975/j.dqyxx.2020-028

Watson P J. A New Perspective on Global Mean Sea Level(GMSL) Acceleration[J]. Geophysical Research Letters, 2016, 43(12): 6478-6484 doi:  10.1002/2016GL069653
[11] 江敏, 钟敏, 冯伟, 等. 联合卫星测高和卫星重力数据研究热容海平面变化[J]. 海洋测绘, 2011, 31(6): 5-7 doi:  10.3969/j.issn.1671-3044.2011.06.002

Jiang Min, Zhong Min, Feng Wei, et al. Study of Steric Sea Level Variations Combining the Data from Altimetry and GRACE[J]. Hydrographic Surveying and Charting, 2011, 31(6): 5-7 doi:  10.3969/j.issn.1671-3044.2011.06.002
[12] 张保军, 王泽民. 联合卫星重力、卫星测高和海洋资料研究全球海平面变化[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1453-1459 doi:  10.13203/j.whugis20150230

Zhang Baojun, Wang Zemin. Global Sea Level Variations Estimated from Satellite Altimetry, GRACE and Oceanographic Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1453-1459 doi:  10.13203/j.whugis20150230
[13] 陈威, 钟敏, 钟玉龙, 等. 2014—2016年El Nino期间全球平均海平面的年际变化及全球水循环的贡献[J]. 科学通报, 2017, 62(19): 2116-2124 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201719011.htm

Chen Wei, Zhong Min, Zhong Yulong, et al. Global Mean Sea Level Variations and the Land Water Cycle at the Inter-Annual Scale During the 2014-2016 El Nino Episode[J]. Chinese Science Bulletin, 2017, 62(19): 2116-2124 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201719011.htm

Nerem R S, Beckley B D, Fasullo J T, et al. Climate-Change-Driven Accelerated Sea-Level Rise Detected in the Altimeter Era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2022-2025 doi:  10.1073/pnas.1717312115
[15] 冯贵平, 宋清涛, 蒋兴伟, 等. 卫星重力估计陆地水和冰川对全球海平面变化的贡献[J]. 海洋学报, 2018, 40(11): 85-95 doi:  10.3969/j.issn.0253-4193.2018.11.009

Feng Guiping, Song Qingtao, Jiang Xingwei, et al. Land Water and Glaciers Contributions to Global Sea Level Change from Satellite Gravity Measurements[J]. Acta Oceanologica Sinica, 2018, 40 (11): 85-95 doi:  10.3969/j.issn.0253-4193.2018.11.009

Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to Understanding Climate Change[J]. Nature Climate Change, 2019, 9(5): 358-369 doi:  10.1038/s41558-019-0456-2

Velicogna I, Mohajerani Y, Geruo A, et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Followon Missions[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087291

Mu D P, Xu T H, Xu G C. An Investigation of Mass Changes in the Bohai Sea Observed by GRACE[J]. Journal of Geodesy, 2020, 94(9): 79 doi:  10.1007/s00190-020-01408-1

Mu D P, Yan H M, Feng W, et al. GRACE Leakage Error Correction with Regularization Technique: Case Studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017, 208(3) : 1775-1786

Chen J L, Tapley B, Wilson C, et al. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090656

Chen J L, Tapley B, Save H, et al. Quantification of Ocean Mass Change Using Gravity Recovery and Climate Experiment, Satellite Altimeter, and Argo Floats Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10212-10225

Peltier R W, Argus D F, Drummond R. Comment on"an Assessment of the ICE-6G_C(VM5a)Glacial Isostatic Adjustment Model"by Purcell et al. [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 2019-2028 doi:  10.1002/2016JB013844

Save H, Bettadpur S, Tapley B D. High-Resolution CSR GRACE RL05 Mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121 (10): 7547-7569 doi:  10.1002/2016JB013007

Sun Y, Riva R, Ditmar P. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 8352-8370 doi:  10.1002/2016JB013073

Yang Y Y, Zhong M, Feng W, et al. Detecting Regional Deep Ocean Warming Below 2 000 Meter Based on Altimetry, GRACE, Argo, and CTD Data[J]. Advances in Atmospheric Sciences, 2021, 38 (10): 1778-1790 doi:  10.1007/s00376-021-1049-3

Zhong Y L, Zhong M, Feng W, et al. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and in situ Measurements[J]. Remote Sensing, 2018, 10 (4): 493 doi:  10.3390/rs10040493

Loomis B D, Rachlin K E, Luthcke S B. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise[J]. Geophysical Research Letters, 2019, 46(12): 6910- 6917 doi:  10.1029/2019GL082929

Loomis B D, Rachlin K E, Wiese D N, et al. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change[J]. Geophysical Research Letters, 2020, 47 (3): e2019GL085488

Uebbing B, Kusche J, Rietbroek R, et al. Processing Choices Affect Ocean Mass Estimates from GRACE [J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 1029-1044 doi:  10.1029/2018JC014341

Watkins M M, Wiese D N, Yuan D N, et al. Improved Methods for Observing Earth's Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671

Scanlon B R, Zhang Z Z, Save H, et al. Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1080-1089

Good S A, Martin M J, Rayner N A. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6704-6716

Yi S, Song C Q, Wang Q Y, et al. The Potential of GRACE Gravimetry to Detect the Heavy Rainfall-Induced Impoundment of a Small Reservoir in the Upper Yellow River[J]. Water Resources Research, 2017, 53(8): 6562-6578

Barnoud A, Pfeffer J, Guérou A, et al. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092824