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地固系下四元数和卡尔曼滤波方法
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摘　要：从地心地固系中卡尔曼滤波方程的推导入手，设计了一个１２状态滤波器，对失准角进行估计，在地心

地固坐标系中完成了惯导的初始精对准。模拟计算证明了此算法的正确性与有效性，并讨论了对准的精度。
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　　惯性导航系统（ＩＮＳ）的初始对准按照阶段的

不同可分为粗对准和精对准。粗对准是在不考虑

惯导传感器误差的前提下，利用惯导传感器的输

出，直接确定出惯导平台相对于其他坐标系的定

向和初始坐标变换矩阵［１］；精对准是建立在粗对

准的基础上的，通常利用卡尔曼滤波器并借助外

部的观测信息（如位置、速度或方位角）来确定失

准角，精确地获取对准结束时刻的坐标变换矩阵，

并在可观测的范围内给出传感器的误差估计。

目前，卡尔曼滤波精对准算法大多基于当地

水平坐标系狀（导航系）。地心地固坐标系（简称

为地固系）犲作为一个重要的参考系，在ＧＰＳ／ＩＮＳ

组合导航与惯性大地测量中多有涉及，但鲜有文

献对在地心地固系中的初始精对准进行研究。本

文从地心地固坐标系下卡尔曼滤波系统误差模型

的建立出发，结合四元数姿态更新，尝试在惯性坐

标系中进行初始精对准工作。经模拟测试证明，

在地心地固坐标系下进行初始精对准，可为在地

固系下进行的ＧＰＳ／ＩＮＳ组合导航与惯性大地测

量提供初始定向信息。

１　系统误差模型与系统设计

在惯性坐标系犻下，有
［１］：

狓犻 ＝犆
犻
犲狓
犲 （１）

狓̈犻 ＝犵
犻（狓犻）＋犪

犻 （２）

对式（１）求二阶导数，并考虑到坐标变换矩阵微分

方程：

犆犻犲 ＝犆
犻
犲Ω

犲
犻犲 （３）

可以得到：

狓̈犻 ＝犆
犻
犲Ω

犲
犻犲Ω

犲
犻犲狓

犲
＋２犆

犻
犲Ω

犲
犻犲狓

犲
＋犆

犻
犲̈狓
犲 （４）

将式（２）代入式（４）左边，并在方程左右同乘犆犲犻，

同时将狓̈犲写成
ｄ狓犲

ｄ狋
的形式，则有：

ｄ狓犲

ｄ狋
＝－Ω

犲
犻犲Ω

犲
犻犲狓

犲
－２Ω

犲
犻犲狓

犲
＋犪

犲
＋犵

犲（狓犲）（５）

对式（５）求微分。由于在初始对准阶段载体的位

置是已知的，微分后有δ狓
犲＝０。Ω

犲
犻犲是与地球自转

相关的常数阵，故有δΩ
犲
犻犲＝０，同时考虑到时间微

分算子ｄ
ｄ狋
与δ的可交换性，此时，可得：

ｄ
δ狓

犲

ｄ狋
＝－２Ω

犲
犻犲δ狓

犲
＋δ犪

犲
＋犵

犲 （６）

式中，犵
犲 是引力扰动矢量；δ犪

犲 为地固系下加速

度计的误差，由下式决定［１］：

δ犪
犲
＝δ犆

犲
犫犪
犫
＋犆

犲
犫δ犪

犫 （７）

坐标变换矩阵的误差可表示为计算值与真值之

差：

δ犆
犲
犫 ＝犆^

犲
犫－犆

犲
犫 （８）
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而计算值与真值之间的关系又可以失准角反对称

矩阵的形式表达：

犆^犲犫 ＝ （犐－ψ
犲）犆犲犫　 （９）

将式（９）代入式（８），得：

δ犆
犲
犫 ＝－ψ

犲犆犲犫 （１０）

将式（１０）代入式（７）并将点积转成叉积，得：

δ犪
犲
＝犆

犲
犫δ犪

犫
＋犪

犲
×φ

犲 （１１）

将式（１１）代入式（６），即得地心地固坐标系下初始

对准的速度误差方程：

ｄ

ｄ狋
δ狓

犲
＝－２Ω

犲
犻犲δ狓

犲
＋犪

犲
×φ

犲
＋犆

犲
犫δ犪

犫
＋犵

犲

（１２）

　　载体坐标系到地固系坐标变换矩阵的微分方

程为：

犆犲犫 ＝犆
犲
犫Ω

犫
犲犫 （１３）

对其求微分，可得：

δ犆
犲
犫 ＝δ犆

犲
犫Ω

犫
犲犫＋犆

犲
犫δΩ

犫
犲犫 （１４）

同时，将式（１０）对时间求导，并考虑到式（１３），有：

δ犆
犲
犫 ＝－ψ

犲犆犲犫－ψ－ψ
犲犆犲犫Ω

犫
犲犫 （１５）

比较式（１４）与式（１５），得：

－ψ
犲犆犲犫－ψ－ψ

犲犆犲犫Ω
犫
犲犫 ＝δ犆

犲
犫Ω

犫
犲犫＋犆

犲
犫δΩ

犫
犲犫

（１６）

将式（１０）代入式（１６），并在等式两边右乘犆犫
犲，可

得：

ψ
犲
＝－犆

犲
犫δΩ

犫
犲犫犆

犫
犲 （１７）

式中，ψ
犲为失准角速率的反对称矩阵，将其写成

矢量形式，有：

ｄ

ｄ狋φ
犲
＝－犆

犲
犫δω

犫
犲犫 （１８）

式中，角速率矢量ω
犫
犲犫为：

ω
犫
犲犫 ＝ω

犫
犻犫－ω

犫
犻犲 ＝ω

犫
犻犫－犆

犫
犲ω

犲
犻犲 （１９）

式中，ω
犫
犻犫是陀螺仪的读数；ω

犲
犻犲是地球自转角速度

矢量。对式（１９）求微分，有：

δω
犫
犲犫 ＝δω

犫
犻犫－δ犆

犫
犲ω

犲
犻犲－犆

犫
犲δω

犲
犻犲 （２０）

式中，由于ω
犲
犻犲为常数矢量，故δω

犲
犻犲＝０，且

δ犆
犫
犲 ＝ （δ犆

犲
犫）
Ｔ
＝ （－ψ

犲犆犲犫）
Ｔ
＝犆

犫
犲ψ

犲 （２１）

将式（２１）代入式（２０）中，并将式（２０）代入式（１８），

可得：

ｄ

ｄ狋
φ
犲
＝－ω

犲
犻犲×φ

犲
－犆

犲
犫δω

犫
犻犫 （２２）

式（２２）为地固系下的角度误差方程。

陀螺仪漂移通常包括随机常值漂移、相关漂

移与白噪声３部分。对于激光陀螺而言，相关漂

移通常采用高斯马尔科夫等随机模型来描述，相

关时间一般比较长，对于十几分钟的自对准过程，

可将相关漂移近似地看成随机常数，且该常数与

随机常值漂移相比要小１～２个数量级
［２］。因此，

在这里将陀螺仪误差简化为随机常数，故有：

δω
犫
犻犫 ＝犫犵＋狑ｇｙｒｏ　 （２３）

式中，犫犵 为陀螺常值漂移；狑ｇｙｒｏ为陀螺白噪声。对

于加速度计的偏置也采用相同的处理方法，有：

δ犪
犫
＝犫犪＋狑ａｃｃｅ （２４）

式中，犫犪 为加速度计的零偏；狑ａｃｃｅ为加速度计白噪

声。

综合式（１２）、式（２２）～式（２４），考虑到陀螺常

值漂移和加速度计常值零偏的时间导数为零，并

把引力扰动矢量作为系统噪声，得到地心地固系

下１２状态初始对准的卡尔曼滤波动态方程：

ｄ

ｄ狋

δ狓
犲

φ
犲

犫犪

犫

熿

燀

燄

燅犵

＝

－２Ω
犲
犻犲 犪犲× 犆犲犫 ０

０ －Ω
犲
犻犲 ０ －犆

犲
犫

０ ０ ０ ０

熿

燀

燄

燅０ ０ ０ ０

δ狓
犲

φ
犲

犫犪

犫

熿

燀

燄

燅犵

＋犌犠 （２５）

式中，犪犲为地固坐标系下加速度计输出的反对称

矩阵；Ω
犲
犻犲是地球自转角速度矢量的反对称矩阵；

犌犠 为测量噪声阵。

静态初始对准采用零速更新，对失准角进行

估计。此时卡尔曼滤波的观测方程为：

犣犽 ＝犎犽犡犽＋狏犽 （２６）

式中，犣犽＝ ０　－狓
犲［ ］ｉｎｓ ；犎犽＝ 犐［ ］０ ０ ０ ，犐是

３×３的单位阵；狏犽 是测量噪声。

２　四元数更新

载体坐标系至惯性坐标系的坐标变换矩阵

犆犲犫 可通过解坐标变换矩阵微分方程（２７）得到：

犆犲犫 ＝犆
犲
犫Ω

犫
犲犫 （２７）

四元数算法为快速求解上述方程、实时提供坐标

变换矩阵犆犲犫 提供了有效途径。

在每一个采样历元里，角度的增量可以近似

地表示为：

δβ狋－１ ＝δθ狋－１－犆
犫
犲（狋－１）ω

犲
犻犲δ狋 （２８）

　δβ狋 ＝δθ狋－犆
犫
犲（狋－１）ω

犲
犻犲δ狋 （２９）

式中，δθ狋－１与δθ狋分别为狋－１与狋历元陀螺的输

出；δ狋为陀螺的采样间隔；ω
犲
犻犲为地球自转角速度

矢量。利用龙格库塔算法微分方程三阶的解

为［１，３］：

狇狋＝ 犐＋
１

１２
（犅狋＋４犅狋－１＋犅狋－２）＋

１

１２［ ·

（犐＋
１

４
犅狋）犅狋－１犅狋－２＋

１

１２
犅狋（犅狋－１－

１

２
犅狋－２ ］）狇狋－２

（３０）

９６



武 汉大学学报·信息科学版 ２０１２年１月

式（３０）实质是一组递推公式，可递推得到每一个

采样历元的四元数狇狋。犅狋的定义为：

犅狋 ＝

０ （ω狋Δ狋）１ （ω狋Δ狋）２ （ω狋Δ狋）３

－（ω狋Δ狋）１ ０ （ω狋Δ狋）３ －（ω狋Δ狋）２

－（ω狋Δ狋）２ －（ω狋Δ狋）３ ０ （ω狋Δ狋）１

－（ω狋Δ狋）３ （ω狋Δ狋）２ －（ω狋Δ狋）１

熿

燀

燄

燅０

（３１）

式中，Δ狋为采样时间且 Δ狋＝２δ狋。下标的数字

（犻＝１，２，３）表示向量ω狋Δ狋中第犻个元素。忽略高

阶项后，有以下观测量：

ω狋－２Δ狋＝３δβ狋－１－δβ狋 （３２）

ω狋－１Δ狋＝δβ狋－１＋δβ狋 （３３）

ω狋Δ狋＝３δβ狋－δβ狋－１ （３４）

对于狋－１和狋－２上的犅狋－１和犅狋－２，可依据式（３２）

～式（３４）类推。通过式（３０）获得当前历元狋的四

元数狇狋后，坐标变换矩阵犆
犲
犫 能用四元数表示：

（犆犲犫）狋 ＝

犪２狋 ＋犫
２
狋 －犆

２
狋 －犱

２
狋 ２（犫狋犮狋＋犱狋犪狋） ２（犫狋犱狋－犮狋犪狋）

２（犫狋犮狋－犱狋犪狋） 犪２狋 ＋犆
２
狋 －犫

２
狋 －犱

２
狋 ２（犮狋犱狋＋犪狋犫狋）

２（犫狋犱狋＋犮狋犪狋） ２（犮狋犱狋－犪狋犫狋） 犪２狋 ＋犱
２
狋 －犫

２
狋 －犆

２

熿

燀

燄

燅狋

（３５）

３　对准精度比较

在对准完成时可以得到由载体坐标系到地固

系的坐标变换矩阵犆^犲犫，此时的坐标变换矩阵 犆^
狀
犫

可以表示为：

犆^狀犫 ＝犆
狀
犲^犆
犲
犫 （３６）

由于惯性仪表的零偏与漂移的存在，故在对准结

束后，计算出的当地水平坐标系与实际的当地水

平坐标系间存在一个小的失准角ψ
狀：

犆^狀犫 ＝ （犐－ψ
狀）犆狀犫 （３７）

若载体坐标系和当地水平坐标系严格重合，即当

犆狀犫＝犐时，式（３７）可写为：

犆^狀犫 ＝ （犐－ψ
狀）＝

１ δφ犇 －δφ犈

－δφ犇 １ δφ犖

δφ犈 －δφ犖

熿

燀

燄

燅１

（３８）

结合式犆狀犫 的定义：

犆狀犫 ＝

ｃｏｓ（ｙａｗ）ｃｏｓ（ｐｉｔｃｈ）
ｃｏｓ（ｙａｗ）ｓｉｎ（ｐｉｔｃｈ）ｓｉｎ（ｒｏｌｌ）

－ｓｉｎ（ｙａｗ）ｃｏｓ（ｒｏｌｌ）

ｃｏｓ（ｙａｗ）ｓｉｎ（ｐｉｔｃｈ）ｃｏｓ（ｒｏｌｌ）

＋ｓｉｎ（ｙａｗ）ｓｉｎ（ｒｏｌｌ）

ｓｉｎ（ｙａｗ）ｃｏｓ（ｐｉｔｃｈ）
ｓｉｎ（ｙａｗ）ｓｉｎ（ｐｉｔｃｈ）ｓｉｎ（ｒｏｌｌ）

＋ｃｏｓ（ｙａｗ）ｃｏｓ（ｒｏｌｌ）

ｓｉｎ（ｙａｗ）ｓｉｎ（ｐｉｔｃｈ）ｃｏｓ（ｒｏｌｌ）

－ｃｏｓ（ｙａｗ）ｓｉｎ（ｒｏｌｌ）

－ｓｉｎ（ｐｉｔｃｈ） ｃｏｓ（ｐｉｔｃｈ）ｓｉｎ（ｒｏｌｌ） ｃｏｓ（ｐｉｔｃｈ）ｃｏｓ（ｒｏｌｌ

熿

燀

燄

燅）

（３９）

比较式（３８）与式（３９），并考虑到失准角均为小量，

有：

δφ犈 ＝－ｓｉｎ（ｐｉｔｃｈ）≈－ｐｉｔｃｈ

δφ犖 ＝－ｔａｎ（ｒｏｌｌ）≈－ｒｏｌｌ

δφ犇 ＝－ｔａｎ（ｙａｗ）≈－ｙａｗ

（４０）

　　在卡尔曼滤波初始对准中，水平失准角受水

平向加速度计的偏置的影响，而方位角则受东向

陀螺漂移与东向加速度计偏置的共同影响［４］。此

时，３个失准角的残余误差为
［２，４］：

δφ犖 ＝－
犫犪犈

犵
，δφ犈 ＝

犫犪犖

犵
，

δφ犇 ＝
犫犪犈

犵

ｔａｎ犔＋
犫犵犈

ω犲ｃｏｓ犔

（４１）

对比式（４０）与式（４１）可知，当犆狀
犫＝犐时对应的理

论姿态角约为：

ｐｉｔｃｈ≈－
犫犪犖

犵
，ｒｏｌｌ≈

犫犪犈

犵
，

ｙａｗ≈－
犫犪犈

犵
ｔａｎ犔－

犫犵犈

ω犲ｃｏｓ犔

（４２）

４　模拟测试

　　本文将通过模拟一个静基座惯导的初始精对

准过程，来检验本文提出的基于地心地固坐标系

初始对准算法的有效性。假设惯导静止在北纬

４５°东经０°的已知点上，载体坐标系的狓轴指北方

向，狔轴指东方向，狕轴沿椭球外法线，３轴方向与

本文当地水平坐标系北东地（ＮＥＤ）的定义一致，

此时有犆狀犫＝犐，而真实的俯仰角、横滚角以及方位

角均为零。

在模拟测试中数据采样率和滤波器工作频率

为２００Ｈｚ，假设由粗对准得到俯仰角和横滚角均

为０．１°，方 位 角 为 １．０°，陀 螺 常 值 漂 移 为

０．００２°／ｈ，加速度计的初始偏差均取为２×１０－４

ｍ／ｓ２。为使得观测数据更加真实，模拟的原始数

据中加入了零均值白噪声。解算中卡尔曼滤波器

的外部观测为零速，而ＩＮＳ的速度采用数值积分

的方法获得［３，５］。结合以上参数，笔者利用Ｃ＋＋

语言编写了数据处理程序，来验证本文的算法。

０７
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图１　地心地固定坐标系下的失准角估计结果

Ｆｉｇ．１　ＭｉｓａｌｉｇｎｍｅｎｔｓＡｎｇｌｅＥｓｔｉｍａｔｉｏｎｉｎＥＣＥＦＦｒａｍｅ

　　图２为对准过程中载体姿态角的收敛情况。

从图中可以看出，俯仰角、横滚角与方位角均收敛

至真值附近，证明了本文提出的基于地固系精对

准方法的有效性。其中俯仰角和横滚角收敛较迅

速，这是由于垂直方向上的加速度耦合进了水平

方向使ＩＮＳ的水平向速度发生变化，而速度正好

是卡尔曼滤波器的外部观测量。由于方位角不能

由速度的观测直接估计出来，所以方位角的收敛

速度较水平姿态角慢，这与在当地水平坐标系中

进行的精对准表现出的特性一致。

图２　载体姿态结果

Ｆｉｇ．２　ＡｔｔｉｔｕｄｅＡｎｇｌｅ

　　为了避免白噪声影响，在对准精度分析中采

用了不含白噪声的模拟数据。数据时长为１０

ｍｉｎ，符合惯性测量初始精对准的时间要求。计

算中陀螺漂移和加速度计零偏采用的参数、仿真

条件的设置均与前文一致，故可利用式（４２）将理

论姿态角计算出，如表１所示。

表１　姿态角收敛结果／１０ｍｉｎ

Ｔａｂ．１　ＣｏｎｖｅｒｇｅｎｃｅｏｆＡｔｔｉｔｕｄｅＡｎｇｌｅ

理论值／（°） 计算值／（°） 误差／（°）

俯仰角 －０．００１１７ －０．００１１７ ０

横滚角 ０．００１１７ ０．００１２０ ０．００００３

方位角 －０．０１１９５ －０．００９４４ ０．００２５１

　　计算结果表明，利用本文提出的地固系下的

初始精对准方法，其姿态角的计算结果趋近于对

应的理论姿态角，对准结果准确。由于方位角的

收敛速度慢，故在１０ｍｉｎ内其收敛精度要低于俯

仰角与横滚角的收敛精度。
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