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Fig. 1 Subgraphs by the Removal of Global Long

Edges and the Consideration of Spatial Obstacles
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Fig.3 Spatial Clustering Result
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A Novel Spatial Clustering Method with Spatial Obstacles

SHI Yan' LIUQiliang'

DENG Min' WANG Jiaqiu'

(1 Department of Surveying and Geo-informatics, Central South University, South Lushan Road, Changsha 410083, China)

Abstract: Spatial clustering has been a major research field in spatial data mining; it aims to

discover some useful patterns or outliers in a spatial database. In practice, spatial obstacles,

as river or mountains should be fully considered in the process of spatial clustering. On that

account, a novel spatial clustering method considering spatial obstacles is proposed in this

paper. Delaunay triangulation is employed to model spatial proximate relations among enti-

ties, and the method can automatically discover clusters with complex structures without us-

er-specified parameters. Experiments on both simulated database and real-world database are

utilized to demonstrate the effectiveness and advantage of our method.

Key words: spatial clustering; spatial obstacle; Delaunay triangulation; spatial data mining
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