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利用犅犪狔犲狊估计进行多波束测深异常数据探测
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摘　要：在海底地形变化连续、平缓的假设条件下，基于Ｂａｙｅｓ估计理论提出了多波束测深异常数据探测方

法，并与选权迭代加权平均滤波法进行了分析和比较。结果证明，该方法可以解决测深异常值判断标准可靠

性的问题，而且能合理、有效地探测出异常值。
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　　多波束测深系统是一个全覆盖式声纳测深系

统，由于仪器噪声、复杂的海况或多波束声纳参数

设置的不合理等因素，使得测深数据中含有少量的

异常数据，这些异常数据直接影响到海底的真实反

映，需要对其进行滤波处理。由于海洋测量的动态

性，不可能通过重复测量来检测异常数据，并提高

精度，为此，在海底地形变化连续、平缓的假设下，

许多学者在异常检测方面取得了不少的研究成

果［１７］，归纳起来主要有中值滤波法、趋势面滤波法

以及选权迭代加权平均滤波法，这些方法判定异常

值的标准都是通过残差序列与２σ或３σ进行比较

得到的，而且可靠的残差序列是依赖于精确的海底

地形，当残差序列不准确时，相应的标准也不可靠，

这就可能引起异常值的漏判，这些缺陷使得上述方

法在判定异常值的可靠性方面大大降低。基于上

述情况，本文受到文献［８，９］思想的启发，对水深观

测值直接引入识别变量，基于Ｂａｙｅｓ估计理论提出

了一种新的多波束异常值探测方法。

１　海洋测深数据的预处理及局部区

域水深观测方程的建立

　　多波束测深采用的是广角度定向发射以及多

通道信息接收技术，因此，通过该系统获得的水深

值具有高密度、不规则的特点［１０，１１］。利用获得的

全部海底测深数据对海底地形进行真实的反映固

然是一种很好的方法，但是由于海底测深数据在

空间上的不规则性使得数据处理的过程变得繁琐

甚至不可行，而且目前很多等高线的算法也是基

于规则格网的，因此在对测深数据进行取舍的同

时进行规则格网化。本文采用的是最小曲率的格

网化方法，该方法保证了海底地形连续变化的特

点，有利于测深异常值的检测。

多波束测深系统获得的海底地形数据是呈条

幅式的，并且由于边缘波束的质量较差，因此只取

靠近中央波束的数据进行处理。根据生产和科学

实验可知，在取得的水深观测数据中，异常值的出

现仅占１％～１０％。采用最小曲率法对数据进行

规则格网化，仅仅使其满足海底地形是连续变化

的，而不是平缓的。因此，为了更有效地检测出异

常值，有必要对规则格网化后的测深数据按行列数

变化作进一步细分，细分后的区域应满足海底测深

值相对稳定，且仅包含少量的（或没有包含）异常值。

经过规则格网化及细分，得区域内测深点的

观测方程为：

犔
狀×１
＝犃

狀×１
犡
１×１
＋Δ
狀×１

（１）

式中，犔为测深点的水深向量；犃＝（１，…，１）Ｔ为设

计矩阵，且列满秩；犡 为未知参数向量；Δ＝（Δ１，

…，Δ狀）
Ｔ为观测误差向量；狀为细分区域的节点

数。

在区域内，任何一个节点犼均可作为检测点，

区别于选权迭代加权平均滤波法［２，３］，检测点的

观测值犔犼也参与平差，其他水深观测值犔犻（犻≠犼，犻
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＝１，…，狀）相应的权为：

犘犻＝犱
－２
犻 ／∑

狀

犻＝１

犱－２犻 （２）

其中，犱犻为测深点犔犻到检测点犔犼的距离。为克服

由于多波束数据过于密集（犱犻＝０）而导致犘犻无法

正常求解的缺点，规定检测点的权犘犼＝１，其他水

深观测值的权在满足式（２）的条件下，还满足相应

的权比关系以及犘犻＜犘犼（犻≠犼）。

２　识别变量的引入及异常值判断标

准的建立

　　基于Ｂａｙｅｓ估计的海洋测深异常数据探测方

法的核心在于直接以水深观测值为研究对象，在

（犡，τ）（τ＝σ
－２
０ ，σ

２
０为单位权方差）满足无信息先验

假设［８，９］，且有了水深观测值犔的情况下，计算每

个观测值犔犻含有异常值的后验概率。为此，假定

每个水深观测值犔犻含异常值的先验概率相等，且

都为α，从而Δ犻服从污染正态分布，即

Δ犻～ （１－α）犖（０，σ
２
０犘

－１
犻 ）＋α犖（０，犽

２
σ
２
０犘

－１
犻 ）

（３）

其中，无异常观测值犔犻对应的观测误差Δ犻服从正

态分布犖（０，σ
２
０犘

－１
犻 ）；含异常观测值犔犻对应的观

测误差Δ犻服从方差膨胀正态分布 犖 （０，犽
２
σ
２
０

犘－１
犻 ），犽＞１为一给定的常数。实验证明，当犽∈

［３，１０］时，对异常值探测结果的影响不大
［８，９］。

水深观测值是以正常值或异常值两种状态存

在的，因此在上述假定条件下，对应于每个水深观

测值犔犻，引入一个识别变量，满足：

δ犻 ＝
１，第犻个测深值服从分布犖（０，犽２σ

２
０犘

－１
犻 ）

０，第犻个测深值服从分布犖（０，σ
２
０犘

－１
犻

烅
烄

烆 ）

（４）

　　随着识别变量的引入，异常值探测的核心就

转变为计算每个观测值犔犻含有异常值的后验概

率狇犻＝狆（δ犻＝１｜犔），犻＝１，…，狀。当狇犻＞０．５时，

认为观测值犔犻中含有异常值；否则，就认为犔犻是

正常值。正常值与异常值的归属是一个非此即彼

的问题，因此０．５是一个自然而明显的判断标准。

３　后验概率的计算及测深异常值推

估解的求取

３．１　犕犆犕犆抽样设计基本原理

要计算识别变量的后验概率值狇犻，需要确定

识别变量δ犻的后验分布，但是该后验分布比较复

杂，且无已有的概率密度函数可以借鉴，为此，考

虑采用 ＭＣＭＣ（Ｍａｒｋｏｖｃｈａｉｎｍｏｎｔｅｃａｒｌｏ）抽样

方法计算该后验概率的值。

考虑到：

狇犻＝狆（δ犻 ＝１狘犔）＝犈（δ犻狘犔）＝

∫δ犻π（δ犻狘犔）ｄδ犻 ＝∫δ犻π（τ，δ，犡狘犔）ｄτｄδｄ犡
（５）

记犢＝（τ，δ１，…，δ狀，犡１，…，犡狋）＝
＾
（犢１，犢２，…，

犢狀＋狋＋１），则狇犻＝∫δ犻π（犢｜犔）ｄ犢。采用 ＭＣＭＣ方法

计算后验概率狇犻的基本思想是：通过建立一个平

稳分布为后验分布π（犢｜犔）的 Ｍａｒｋｏｖ链来得到

后验分布的样本珟犢
（１）、…、珟犢

（犚），然后基于这些样

本计算后验概率狇犻＝狆（δ犻＝１｜犔）的值。

３．２　犕犆犕犆抽样设计步骤

１）确定识别向量的初始值δ
（０）＝（δ

（０）
１ ，…，

δ
（０）
狀 ）

从区域水深观测值中选取狀０个观测值构成

初始子集犛０，狀０的确定原则是以很高的概率保证

犛０是仅含正常观测值的子集，同时也满足初始子

集的容量大于或等于必要观测的条件。本文采用

文献［８，９］提出的方法来确定狀０，当狀０确定后，相

应的识别变量的初始值δ
（０）根据下式进行确定：

δ
（０）
犻 ＝

１，犔犻犛０

０，犔犻∈犛
｛

０

，犻＝１，…，狀 （６）

　　２）给出初始值向量犢
（０）＝（τ

（０），δ
（０），犡

（０））

其中识别向量的初始值δ
（０）的选择具有基础

性的作用，当δ
（０）确定后，可以根据公式：

珟犡＝ （犃
Ｔ珟犘犃）－１犃Ｔ珟犘犔 （７）

珟犘＝ｄｉａｇ
犘１

１＋δ１（犽
２
－１）

，…， 犘狀
１＋δ狀（犽

２
－１（ ））

（８）

求 得 未 知 参 数 的 初 始 解 犡
（０）。 因 为

τ｜犔，δ
（０），犡

（０｛ ｝） ～Γ［狀／２，∑珟Δ
２
犻／２］，且 珟Δ犻 ＝

（犔犻－犪
Ｔ
犻犡） 犘槡 犻

１＋δ犻（犽－１）
，因此可以随机产生出τ

（０），从而

形成初始值向量犢
（０）＝（τ

（０），δ
（０），犡

（０））。

３）迭代产生样本值向量犢
（狊）＝（τ

（狊），δ
（狊），犡

（狊））

假定第狊≥１次抽样开始时的样本值向量为

犢
（狊－１）＝（τ

（狊－１），δ
（狊－１），犡

（狊－１）），则第狊次抽样产生

的样本值向量为犢
（狊）＝（τ

（狊），δ
（狊），犡

（狊））。其中，τ
（狊）

从条 件 分 布狆（τ｜犔，δ
（狊－１），犡

（狊－１））中 抽 取，而

τ｜犔，δ，｛ ｝犡 ～Γ［狀／２，∑珟Δ
２
犻／２］；犡

（狊）从条件分布

狆（犡｜犔，δ
（狊－１），τ

（狊））中抽取，而｛犡｜犔，δ，τ｝～

犖 珟犡，（犃Ｔ珟犘犃）－１／（ ）τ ；δ
（狊）从条件分布狆（δ犻｜犔，δ

（狊）
１ ，

…，δ
（狊）
犻－１，δ

（狊）
犻＋１，…，δ

（狊－１）
狀 ，犡

（狊），τ
（狊））中抽取，而｛δ犻｜

９６１
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犔，δ－犻，犡，τ｝～犫（１，珘狇犻），犻＝１，…，狀，其中，珘狇犻＝

犘δ犻＝１犔，δ－犻，犡，｛ ｝τ ＝α犳（Δ犻 狆犻槡τ／犽）／［α犳（Δ犻
狆犻槡τ／犽）＋犽（１－α）犳（Δ犻 狆犻槡τ）］，进行抽样，直到

Ｍａｒｋｏｖ链达到稳定，此时，分布收敛到π（犢｜犔），

即得一个 ＭＣＭＣ样本 珟犢。

４）收敛性判断及识别变量后验概率的计算

给定一非常小的常数ξ＞０，当｜^狇
（狊）
犻 －^狇

（狊－１）
犻 ｜

＜ξ（犻＝１，…，狀）成立时，即认为 ＭＣＭＣ抽样收敛

了，从而得到的样本可以看作是来自于平稳分布

为π（犢｜犔）的 Ｍａｒｋｏｖ链的一个 ＭＣＭＣ样本。重

复ＭＣＭＣ抽样犚次，每次抽样均使Ｍａｒｋｏｖ链达

到稳定，这样就获得了一个容量为犚 的 ＭＣＭＣ

样本：

珟犢
（１）
＝ （τ

（１），δ
（１）
１ ，…，δ

（１）
狀 ，犡

（１）
１ ，…，犡

（１）
狋 ）

…

珟犢
（犚）
＝ （τ

（犚），δ
（犚）
１ ，…，δ

（犚）
狀 ，犡

（犚）
１ ，…，犡

（犚）
狋 ）

　　在上述样本的基础上，由下述公式计算后验

概率值：

狇^犻 ＝

１

犚∑
犚

犼＝１

α犳（Δ犻 犘犻槡 τ／犽）

α犳（Δ犻 犘犻槡 τ／犽）＋犽（１－α）犳（Δ犻 犘犻槡 τ）

（９）

式中，犳（·）为标准正态分布的概率密度函数。

根据狇^犻的值标定出测深异常值，因为区域内海底

的地形变化是连续、平缓的，对于不是异常值的水

深，原则上保留原始观测值，而对于异常值，采用

区域内正常水深值的加权平均值作为推估值。

４　实验数据与分析

４．１　实测算例

本文的实验数据来自于ＣＡＲＩＳ公司ＨＩＰＳ＆

ＳＩＰＳ６．１软件自带的一条测线的原始多波束测深

数据，由于通常情况下边缘波束的质量比较差，所

以只取靠近中央波束的数据。采用最小曲率法得

到的规则格网构成的矩阵维数为１００×７６，同时格

网化后的数据仍保留有异常点及较小的随机噪声，

测区最大水深为１９．６５７０ｍ，最小水深为１５．６９６５

ｍ，如图１所示。由于实测海底地形比较平坦，选

权迭代加权平均滤波法中的犽０取０．５～１，犽１取１～

２。对规则格网化后的数据进一步细分成３８０个４

ｍ×５ｍ的局部窗口。为验证文中提出的方法，将

其与选权迭代加权平均滤波法进行比较。由文献

［２，３］可知，选权迭代加权平均滤波法随着经验值

犽０与犽１取值的不同，所得的残差序列也不相同，分

别设为狏１，…，狏狀和狏′１，…，狏′狀 ，考虑如下几种方

案：① 基于狏１，…，狏狀（犽０＝０．８，犽１＝１．５），采用选

权迭代加权平均滤波法 （^σ
２
０＝（狏

Ｔ犘狏）／（狀－狋））；

② 基于狏′１，…，狏′狀（犽０＝０．６，犽１＝１．２），采用选权

迭代加权平均滤波法 （^σ
２
０＝（狏

′Ｔ犘狏′）／（狀－狋））；

③ 基于Ｂａｙｅｓ估计的异常数据探测法。

图１　原始的水深数据

Ｆｉｇ．１　ＯｒｉｇｉｎａｌＤｅｐｔｈＤａｔａ

各方案的计算结果如图２所示。表１的数据

是采用方案③计算的第１９２个４ｍ×５ｍ内所有

点的后验概率值。

４．２　模拟算例

为充分体现基于Ｂａｙｅｓ估计的异常数据探测

法的优越性，模拟了一组数据，并对１０个点加入

异常，异常值从－３～３ｍ，其中在第５３个５ｍ×

图２　各方案剔除异常值后的水深数据（实测数据）

Ｆｉｇ．２　ＤｅｐｔｈＤａｔａｂｙＤｉｆｆｅｒｅｎｔＳｃｈｅｍｅｓ（ＲｅａｌＤａｔａ）

表１　采用方案③计算第１９２个４犿×５犿内所有点的后验概率值

Ｔａｂ．１　ＰｒｏｂａｂｉｌｉｔｙｏｆＡｌｌＮｏｄｅｓｏｆｔｈｅ１９２ｔｈｂｙｔｈｅＳｃｈｅｍｅ③

观测值序号 狇犻 观测值序号 狇犻 观测值序号 狇犻 观测值序号 狇犻

犔１９２（１，１） ０．０１７５ 犔１９２（２，１） ０．２０６５ 犔１９２（３，１） ０．６１０３ 犔１９２（４，１） ０．０１３２

犔１９２（１，２） ０．０１６４ 犔１９２（２，２） ０．６３６４ 犔１９２（３，２） ０．９９９５ 犔１９２（４，２） ０．０２００

犔１９２（１，３） ０．０１６０ 犔１９２（２，３） ０．０１３１ 犔１９２（３，３） ０．０２７６ 犔１９２（４，３） ０．１８９１

犔１９２（１，４） ０．０１６２ 犔１９２（２，４） ０．０１９３ 犔１９２（３，４） ０．０２２１ 犔１９２（４，４） ０．０６８０

犔１９２（１，５） ０．０２２９ 犔１９２（２，５） ０．０３２９ 犔１９２（３，５） ０．０２７５ 犔１９２（４，５） ０．０３５３
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５ｍ内的犔５３（２，２）数据加入－３ｍ的异常。将数据

格网化后构成的矩阵维数是１００×７５，测区最大水

深为１７．７７１６ｍ，最小水深为４．４３１１ｍ，如图３所

示。对规则格网化后的数据进一步细分为３００个５

ｍ×５ｍ的局部窗口，仍采用上述的三种方案进行

数据处理，其中方案①中取犽０＝１．２，犽２＝２．０；方案

②中取犽０＝１．０，犽１＝１．８。各方案的计算结果如

图４所示。表２的数据是采用方案③计算的第

５３个５ｍ×５ｍ内所有点的后验概率值。

图３　原始的水深数据

Ｆｉｇ．３　ＯｒｉｇｉｎａｌＤｅｐｔｈ

图４　各方案剔除异常值后的水深数据（模拟数据）

Ｆｉｇ．４　ＤｅｐｔｈＤａｔａｂｙＤｉｆｆｅｒｅｎｔＳｃｈｅｍｅｓ（ＭｏｄｅｌＤａｔａ）

表２　采用方案③计算第５３个５犿×５犿内所有点的后验概率值

Ｔａｂ．２　ＰｒｏｂａｂｉｌｉｔｙｏｆＡｌｌＮｏｄｅｓｏｆｔｈｅ５３ｔｈｂｙｔｈｅＳｃｈｅｍｅ③

观测值序号 狇犻 观测值序号 狇犻 观测值序号 狇犻 观测值序号 狇犻 观测值序号 狇犻

犔５３（１，１） ０．０３９５ 犔５３（２，１） ０．０２０９ 犔５３（３，１） ０．０１６７ 犔５３（４，１） ０．０１３７ 犔５３（５，１） ０．０１３０

犔５３（１，２） ０．０２４１ 犔５３（２，２） ０．９９９８ 犔５３（３，２） ０．０１５５ 犔５３（４，２） ０．０１３３ 犔５３（５，２） ０．０１３３

犔５３（１，３） ０．０１８５ 犔５３（２，３） ０．０１５０ 犔５３（３，３） ０．０１３９ 犔５３（４，３） ０．０１３０ 犔５３（５，３） ０．０１３６

犔５３（１，４） ０．０１４０ 犔５３（２，４） ０．０１３４ 犔５３（３，４） ０．０１３０ 犔５３（４，４） ０．０１３５ 犔５３（５，４） ０．０１５７

犔５３（１，５） ０．０１３３ 犔５３（２，５） ０．０１３０ 犔５３（３，５） ０．０１３４ 犔５３（４，５） ０．０１４１ 犔５３（５，５） ０．０１８３

４．３　结果分析

由图１、图３可知，利用观测数据对海底地形

进行真实反映的过程中，异常值的影响是很大的，

必须对其进行滤波处理。对比图２（ａ）、２（ｂ）及图

４（ａ）、４（ｂ）可知，选权迭代加权平均滤波法虽然在

一定程度上剔除了异常值，但是随着残差序列取

值的不同，异常值剔除的程度也有所不同。

由表１及表２可知，利用基于Ｂａｙｅｓ估计的

异常数据探测法能快速地计算出水深观测异常值

的后验概率，并根据识别变量判断异常值的标准。

由于实测算例中犔１９２（２，２）、犔１９２（３，１）、犔１９２（３，２）

及模拟算例中犔５３（２，２）的狇犻值均大于０．５，因此

被确定为异常值，并准确标定。由图２（ｃ）及图

４（ｃ）可以看出，由于异常值被清晰地标定及拟合，

因此更能反映出海底的真实地形。

５　结　语

基于Ｂａｙｅｓ估计的异常数据探测法的基本思

想是通过计算水深观测含有异常值的后验概率，

并根据水深观测识别变量判别法对后验概率值进

行判断，其判断标准清晰明了，并且由于 ＭＣＭＣ

抽样方法的引入，使得后验概率值的计算过程非

常简单。实测和模拟算例表明，该算法能合理有

效地探测出异常值。
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