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Tab. 2 Posterior Probability of Classification Variable
Based on MCMC Sampling Algorithm

WMEF S

MMERF S ¢ WNEFES

1 0.037 3 7 0.035 8 13 1.000 0
2 0.046 9 8 0.035 7 14 1.0000
3 0.036 0 9 0.042 7 15 0.067 8
4 0.0364 10 0.039 4 16 0.049 7
5 0.035 9 11 0.036 9 17 0.037 8
6 0.035 7 12 0.038 3 18 1.0000
19 0.0492
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Tab. 3 Posterior Probability of Classification Variable
Based on adaptable MCMC Sampling Algorithm

MWERFS o WNEFS o WNEFS o

1 0.036 5 7 0.0357 13 0.060 9
2 0.040 6 8 0.0357 14 1.000 0O
3 0.0359 9 0.038 9 15 1.000 0O
4 0.036 0 10 0.037 4 16 0.041 8
5 0.035 8 11 0.036 3 17 0.036 7
6 0.0357 12 0.036 9 18 0.036 2
19 0.041 5
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Abstract: Combining prior information with observing information, Bayesian methods for

blunder detection are imposed. Especially a lot of effective measures are used to overcome the

masking and swamping. When multiple blunder influence each other, the Bayesian method

for blunder positioning based on the posterior probabilities of classification variables some-

times gives birth to masking and swamping which leads to the failure of positioning blunder.

Hence, on the basis of seeking the reason of masking and swamping, and analyzing the

eigenstructure of sampling correlation matrix of classification variables, the Bayesian unmas-

king method for positioning multiple blunder is introduced. The corresponding algorithm-a-

daptable MCMC sampling algorithm is implemented.
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