

文章编号: 1000-050X(2001)04-0296-07

文献标识码: A

大型 GIS 与数字地球的空间数学基础研究

胡 鹏¹ 吴艳兰¹ 杨传勇¹ 李国建¹

(1 武汉大学资源与环境科学学院, 武汉市珞喻路 129 号, 430079)

摘要: 将地图投影概念由传统的曲面到平面的变换扩展为曲面到曲面的变换, 并提出一套适合于大型 GIS 和地球数字产品的实用“地图投影”模型。该模型的视图采用等距离切圆柱投影, 度量空间是椭球面几何系统, 符合计算机环境下 GIS 视图与度量空间分离的特性。鉴于全球多分辨率连续可视化、精密可视化量算、三维、多维地球数据统一, 标准的空间定位框架和只有在统一的空间系统内, 全球资源、生态环境数据才能进行精确的地理分析等 4 个方面的需要, 从地图投影发展到本模型将是方向和技术趋势。

关键词: 数字地球; 大比例尺 GIS; 地图投影; 空间数学基础

中图法分类号: P282. 1; P208

大型 GIS 和空间数据产品在理论上和实践上都遇到了空间数学基础问题, 这也是整个地球空间信息科学发展中的基础问题。目前该问题已引起国际学术机构和著名学者的高度重视。全球空间数据基础设施 (GSDI) 委员会及技术工作组主席 Peter Holland 和 Doug Neibert 在 1999 年北京“数字地球”国际会议报告中提出, 技术组将采用地理坐标作为空间参考体的单一标准, 以被各国用作标准或在过渡期与各国标准相关联, 以支持数字地球的需要^[1]。大地测量学家陈俊勇院士也提出, 大地测量由过去二维的平面系统转变, 并创建以 ITRF 为基础的我国高精度、动态的三维坐标框架^[2]。

受传统地图空间数学基础理论和方法的影响, 目前几乎所有的 GIS 均沿用地图投影作为自己参考系的空间数学基础, 这在特定用途、局部范围内是可行的。但随着“数字地球”的提出, GIS 数据区域从局部向大区域甚至全球范围发展, 但 GIS 的空间数学基础却没有得到相应的变化和发展, 不能满足数字地球连续多分辨率和全面用途的需要。

1 目前 GIS 空间数学基础的局限

地图投影是为了用有限的平面地图来表示地

球曲面上的要素而进行的两个二维场间的拓扑变换。具体地图投影类型的选择通常要综合考虑地图投影三要素: 地图用途、比例尺和区域的位置、形状及大小。可以说, 地图投影是地图的空间数学基础。

GIS 起源于地图学, 地图是 GIS 主要的数据来源, 当前几乎所有的 GIS 都沿用地图投影的概念, 采用各自定义的地图投影作为自己的空间数学基础。在这种情况下, 一般 GIS 均使用或主要使用单分辨率的基础信息, 其他信息需先转化为该分辨率投影数据后再纳入系统。小比例尺 GIS 使用小比例尺投影, 大比例尺 GIS 选择大比例尺投影。前者数学基础变形严重, 转换集成数据精度差, 度量系统精度不可靠, 分析困难甚至无法进行; 而大比例尺 GIS 只能小区域使用, 用于大区域将产生图形不连续、空间数据无法进行全局统一分析等操作。

大型 GIS 以一定规模的区域或整个地球作为对象, 地图投影的三要素已经很难限定, 地图数据用途由特定用途延伸为全面用途, 比例尺从一种或以一种为主转化为多分辨率、多尺度、任意比例尺, 区域范围也从某区域扩展为大区域或全球范围。所以, 从数字地球的基本要求看, 传统的投影选择对大型 GIS 已不适用。

在我国, 大多数 GIS 都采用与国家基本图一

致的地图投影系统, 这就是大比例尺的高斯-克吕格投影和中小比例尺的 Lambert 投影。实践证明, 对于大型 GIS 和“数字地球”而言, 采用高斯投影为空间数学基础会带来诸多问题。

1) 对于大区域, 不能全局地连续可视化, 这是一个根本性的缺陷。空间目标在不能连续的各幅地图中进行目标化、图幅实体分割, 分割后的实体均带着自己割裂的空间数据进入系统空间, 从而引起复杂的拼图接边问题。这对于分带投影如此, 对于大宽带而言, 则变形太大且复杂, 而且不规则, 给后续工作及可视化带来很大困难和不良效果。

2) 高斯投影不适合多分辨率的定向结构和表示。在高斯投影系统中, 定义全域准确的长度和量度十分复杂, 且实施较为困难; 相应地, 进行投影变换以统一空间数学基础情况多变, 也十分复杂和困难。

3) 系统不便于动态变化和扩张。在时空及性质用途方面, 一个区域 GIS 面临十分频繁的动态扩张, 比如边界的外扩、合并、与外界的交流、系统用途的增加, 这时系统实际上没有固定的边界。由于高斯投影的复杂性、各区异性, 难以进行规范的分解合并工作。

4) 难以在此复杂的二维度量空间内定义三维和时间维。在如此复杂的二维度量空间内定义三维, 进而加上时间维的 GIS 将是十分困难、效果不佳、意义不大的工作。定义更多维更是无从谈起, 区域或数据源系统一旦变化, 必将带来很大麻烦。

因此, 只有全球与地理分布有关的信息均具有统一的、严密连续的空间定位框架, 其数据的统一性、完整性才具有完全可靠的保障, 这是区域可持续发展以及大区域空间信息系统可持续发展的最重要的基础设施。

2 大型 GIS 适宜的空间数学基础

当前大地坐标系是统一的, 能准确、惟一地描述地球上任一点的位置, 并能动态适应历史的、现代的越来越精密的各种参考椭球体, 它可作为大型 GIS 和“数字地球”最适当的坐标系, 即采用 (B, L, H) 描述地理实体几何特征点。这时, 二维场 (B, L) 是三维地理信息空间沿法线的一个二维投影, 可以用地图投影把它展平到 XOY 平面上, 也可不展, 它本身为规则的三维椭球面。由于其数学性质规则, 采用二维的曲线族 (B, L) 来表

示其上坐标显得简便得多, 人们也更易理解, 它是地理信息的水平坐标系, 而 H 可视为垂直坐标。

大型 GIS 作用空间由小范围局部扩展到地学大范围甚至全球范围, 地球数字产品的覆盖区域也遍布全球, 在这样大的区域内实现信息共享和互操作, 除统一采用上述椭球坐标系外, 地图投影的标准化也十分重要。

2.1 标准的地图投影模型

这里的地图投影与传统意义上的地图投影概念已不相同。地图投影的传统概念仅仅是由三维旋转椭球面上的曲线坐标 (B, L) 到二维平面 (XOY) 的拓扑转换, 这主要由传统地图的载体采用平面纸张及平面量测技术所决定。随着地图的表现形式由纸质平面地图转为计算机环境下的数字地图, 可以也必须将地图投影的概念推广。由曲面到平面的转换推广为曲面到曲面的转换, 也可为曲面本身的转换, 只要保持其空间基本特征即可。在此, 选择从实际椭球体地理空间 (B, L, H) 沿法线向二维曲面 (B, L) 投影作为空间数学基础, 由 (B, L) 二维场所决定的椭球面几何系统作为度量空间。在椭球面几何系统上按下列方式定义距离、方位角和面积。

2.1.1 距离和方位角定义^[3,4]

已知 1 点 (B_1, L_1) , 2 点 (B_2, L_2) , 扁率 α , 短轴 b , 长轴 a , 第一偏心率 e , 第二偏心率 e' 。1 点到 2 点的距离 S_{12} 为:

$$S_{12} = K_1 b (\Delta\sigma - d\Delta\sigma)$$

1 点到 2 点的方位角为:

$$\Delta\omega = \arctan(\cos u_2 \sin \Delta\omega) / (\cos u_2 \sin u_2 \cos u_2 \cos \Delta\omega)$$

$$\tan u_1 = (1 - \alpha) \tan B_1$$

$$\tan u_2 = (1 - \alpha) \tan B_2, d\Delta\omega = 0$$

式中参数由以下过程给出:

$$\Delta\omega = L_2 - L_1 + d\Delta\omega$$

$$\tan\Delta\sigma = \frac{[(\cos u_2 \sin \Delta\omega)^2 + (\cos u_1 \sin u_2 - \sin u_1 \cos u_2 \sin \Delta\omega)^2]}{(\sin u_1 \sin u_2 + \cos u_1 \cos u_2 \cos \Delta\omega)} \rightarrow$$

$$\leftarrow \frac{\sin u_1 \cos u_2 \cos \Delta\omega)^2}{\cos u_1 \cos u_2 \cos \Delta\omega}^{1/2}$$

$$\cos u_n = \cos u_1 \cos u_2 \sin \Delta\omega / \sin \Delta\omega$$

$$\cos 2\sigma_m = \cos \Delta\sigma - 2 \sin u_1 \sin u_2 / \sin^2 u_n$$

$$V = 1/4 \alpha \sin^2 u_n$$

$$K_3 = V[1 + \alpha + \alpha^2 - V(3 + 7\alpha - 13V)]$$

$$d\Delta\omega = (1 - K_3) \alpha \cos u_n [\Delta\sigma +$$

$$K_3 \sin \Delta\sigma (\cos 2\sigma_m - K_3 \cos \Delta\sigma \cos 4\sigma_m)]$$

作条件循环计算, 使 $d\Delta\omega$ 变化小于规定限差后,

进行下列计算:

$$t = 1/4e^2 \sin^2 u_n$$

$$K_1 = 1 + t \{ 1 - t/4[3 - t(5 - 11t)] \}$$

$$K_2 = t \{ 1 - t[2 - t/8(37 - 94t)] \}$$

考察上述距离, 显然在集合 $\{B, L\}K$, 距离 S 是将 $\{B, L\} \times \{B, L\}$ 向实数域 \mathbf{R}^1 进行的变换, 对于任意点 1, 2, 3, 有 $S_{12} \geq 0$, 仅当点 1 与点 2 重合时, $S=0$ 成立, $S_{12}=S_{21}$, $S_{12}+S_{23} \geq S_{13}$ 。

因此, (B, L) 是一个度量空间, 距离 S 为一个尺度。类同考察方位角, 可知它是似尺度。

2.1.2 面积定义^[4]

对于空间任一封闭多边形面积, 可采用数值积分的方法在规定精度范围内予以解算。任一椭球面上的两条子午线与两条平行圈围成的曲边梯形面积可采用下列公式计算:

$$\begin{aligned} T = K [& A \sin(\Delta\Phi/2) \cos\Phi_m - \\ & B \sin(3\Delta\Phi/2) \cos 3\Phi_m + \\ & C \sin(5\Delta\Phi/2) \cos 5\Phi_m - \\ & D \sin(7\Delta\Phi/2) \cos 7\Phi_m + \dots] \end{aligned}$$

式中, A, B, C, D 为常数; $\Delta\Phi = \Phi_2 - \Phi_1$; $\Phi_m = (\Phi_2 + \Phi_1)/2$; $K = 2a^2(1 - e^2)(\lambda_2 - \lambda_1)$ 。

对于区域内任一多边形, 设想沿经线方向将其分为几个同经差的窄条曲边梯形。由于经差足够小, 可视为符合上式的曲边梯形, 这时仅需对这些窄条多边形求和即可得多边形面积。为使误差控制在允许范围内, 对于设定初始经差为 Δ 与经差为 $\Delta/2$ 的多边形面积两次求和, 若面积差别超限, 则设定初始经差为 $\Delta/2$, 与经差为 $(\Delta/2)/2$ 的多边形再进行求和比较, 若差别不超限, 则面积计算完毕, 否则继续细分递归计算, 直至满足精度要求。

地图投影的平面直角坐标空间即欧氏空间是一线性空间, 具有各向同性的特点, 这与实际地球是一非线性空间, 具有各向异性的特征是不相吻合的。另外, 在地图投影的平面直角坐标空间的量度精度与投影类型和比例尺有关。在此, 笔者采用参考椭球面几何空间作为度量空间, 在上述两方面均优于任何地图投影的平面直角坐标空间, 其量度距离可准确到所需程度, 方向概念是严密准确的, 而且范围不限, 适用于全球。例如, 优于高斯投影, 其方位不再有子午线收敛角的偏差, 距离也不再有 6° 带 0.28% 的误差。

针对计算机环境下, 数字地图的视图和度量是分离的特点, 该标准模型的视图采用椭球体地理空间 (B, L, H) 沿法线向二维曲面 (B, L) 投

影, 度量空间是椭球面几何系统。投影是非常简单的, 度量也正是所需要的, 在计算机上可以实时得到上述量度。

2.2 实用模型

上述 (B, L) 二维场可取 B, L 作为两坐标轴, 它们相互正交, 其单位可取 rad, 也可取 $^\circ$ 。不同单位使得图的大小不一样, 为此, 引入常数 K 。实用模型如下:

$$\begin{aligned} X &= K \cdot L \\ Y &= K \cdot B \end{aligned} \quad (1)$$

式中, B, L 以 rad 为单位。显然, 若 X, Y 采用 m 为单位, 则 K 的实际物理意义为 1 rad 所对应的弧长米数。

显然, K 与人们所要求的图形符号显示的分辨率即比例尺有关, 而 B, L 的精度与测量或原始精度有关, 分辨率与精度要相匹配。当令 K 为地球的平均曲率半径 R 时, 式(1)即以实际地球空间的大小来讨论平面图示问题, 即

$$\begin{aligned} X &= R \cdot L \\ Y &= R \cdot B \end{aligned} \quad (2)$$

我们将它视为平面上曲面坐标的详细显示。

2.3 实用模型的空间特性分析

2.3.1 几何性质的讨论

式(2)形式上与平均曲率半径 R 的球的等距离切圆柱投影形式相同, 但其实质概念已不一样。前者是大地坐标系的水平投影 (B, L) 的平面图示, 具有全球足够精度椭球面几何度量的二维度量空间, 二维图示与度量是分离的, 而又互相精密结合; 后者是地图投影二维平面图示及平面度量系统, 采用的是二维欧氏空间距离, 相应于二维平面纸图和直尺、圆规、量角器等平面度量。而前者没有也不可能采用后者的度量, 后者往往存在一定范围内控制着的长度、角度、面积变形, 前者在全球范围内均不存在显著变形, 具有优良的度量特性。

可以说, 该模型的坐标是等距离切圆柱投影, 度量是椭球面几何系统。显然, 它的计算机屏幕上的图示只具有局部的相对的分布, 没有也不可能采用平面的度量, 这样从概念上说, 它既是地图投影, 又不是地图投影。

过去, 地图投影代表着二维的平面图示, 代表平面的度量, 两者是统一的。对于有些图, 当图示不能满足量度要求时, 在图示上加注量度, 对于地图的可视化度量要求而言, 标注每个点是不可能的。因此, 过去往往对地图投影提出了一些实际的但不科学的要求, 这是历史的困惑(对一指定区

域, 探求具有最小角度、长度变形的地图投影。实际表明, 它应有解, 但如同地图投影中的哥德巴赫问题至今无解)。在计算机上两者可分离, 实际上也是分离的, 图示仅表示对象的几何特征和拓扑特征, 保持空间特征, 而度量才准确说明空间量值状况。

2.3.2 拓扑性质的讨论

在地球表面及其领域的地理图层是一个立体空间, 理论上三维与二维的拓扑性质是不同的, 但是我们或多或少地假设所研究的地理层、圈是与一个开口的球体拓扑同胚, 以及和去掉了一个人点的椭球面同胚, 也和一平面同胚。

这样, 在理论上, 上述标准模型和实用模型保持了地球表面或地球信息世界原有的拓扑性质。

2.3.3 在一定分辨率和几何误差情况下的讨论

上述讨论的情况是理论上精确和紧致的情况, 而实际的地理信息数据往往是一般分辨率和一定精度下离散的情况, 因此出现几何分辨率和拓扑分辨率两个概念, 也即由于误差将会影响几何上和拓扑上的同一性。

因此, 由于几何误差存在, 必然受到这两个分辨率的影响, 产生影响几何分辨率和拓扑分辨率的可能, 而且误差越大, 可能越大。显然, 在高斯投影中, 邻带投影中对分度带边界的投影裂缝, 可以看作投影产生的误差引起了拓扑的不一致性, 同时高斯投影中子午线收敛角相当大时, 引起方向上的错觉可作为几何特征上的变化。

上述模型相对一般投影而言, 在理论和实际上均是无瑕的。这样, 我们所选择的空间及投影可以严密而又可靠地保持大型地理空间乃至全球地理实体的空间几何特征和拓扑特征, 并且适合多分辨率乃至无级分辨率的统一模型。

2.3.4 地理坐标和大地坐标的关系

以上用的是大地坐标, 但实际上, 地图上所标绘的是地理坐标 Φ, λ , 其中 λ 与 L 数值相同, 而 Φ 与 B 数值上有差别。在小比例尺上可以不予以顾及, 当在大比例尺、高精度情况下, 两者之间可按下式计算:

$$B = \Phi + B_2 \sin 2\Phi + B_4 \sin 4\Phi + B_6 \sin 6\Phi + B_8 \sin 8\Phi \quad (3)$$

式中, Φ 是已知的; B_2, B_4, B_6, B_8 为常数。

这样, 式(1)、(2)中的相应 B 实际应换为 Φ , 而度量公式数值应采用图示坐标依式(3)计算。

2.4 数据容纳及输出问题

作为“数字地球”产品的大型 GIS, 它的数据来源是极其广泛的, 包括多个时期、多个椭球体、

多个坐标系、各种形式、各种投影、多种设备采集, 多种媒体形式, 各种图形、图像等非常庞杂的海量数据, 而且精度跨度很大, 分辨率跨度也很大, 各种数据的处理、分析、变换的方法手段很多。相应于本讨论, 可归结为下列 3 种情况:

1) 多时期、多个椭球体、多个坐标系归化为统一的或特定的椭球体大地坐标系。此时, 它们的数学模型均是确定的, 这方面诸多文献类同文献[3], 在理论和实践上已将此问题解决得十分清楚和完善。

2) 矢量形式和混合形式中的矢量部分数据的变换。这类数据的空间数据一般是以离散点(几何数据加拓扑数据)的形式出现, 其诸如 DLG、DEM 均可归为此类。这种情况下, 拓扑数据超出本讨论, 只需讨论和转换几何数据。若是基于大地坐标的数据可采用椭球面投影。对于基于已知地图投影的数据, 则通过地图投影反变换进行逐点转换, 具体可采用各种解析的和数值的方法^[4, 5]。

3) 由各种图形、图像组成的模拟数据资料及 DRG、DOM 类型的数字产品的变换。这类数据的变换与离散点数据是不一样的, 它不仅要求变换它们全部图元的几何坐标正确无误, 而且要求变换后仍为连续的图形、图像、DRG、DOM。这类数据以 DRG 最有代表性, 尤其当前全国规模的 1:25 万数据库已经完成, 1:5 万、个别地区 1:1 万甚至更大比例尺的海量 DRG 正在制作时, 更有实际意义。因此, 从 DRG 的角度而言, 变换还要求大区域内各点变换后的局部比例尺不能差得太大, 而造成图像质量的明显下降。

为此, 模型式(2)应进行部分改造, 以较好地满足上述要求, 即

$$\begin{aligned} X &= R_1 \cdot \lambda \\ Y &= R \cdot \Phi \\ R_1 &= \cos P_m \cdot R \end{aligned} \quad (4)$$

式中, R_1 为区域内指定平均曲率半径; P_m 为相应半径的纬度。例如, 对于全中国, 由于幅员是在北半球 $0^\circ \sim 55^\circ$ 之间, 可令 R_1 为北半球 38° 处的曲率半径, 约为 $0.788R$ 。这样在全国范围内, 1:5 万的 DRG 产品图像的横向压缩率最大仅 $1/5$, 而纵向变化很小, 不致影响原始高斯投影的 DRG 质量。

DRG 变为式(4)的投影变换实施可采用“万象拼图变换软件”进行, 该软件是基于经典制图学中的“格网转绘”思想, 采用广义地图投影数值变换的方法原理实现的通用变换工具。

相当于上述3种类型,输出问题从投影变换角度而言几乎完全一样,只是变换对象和结果互换,不再赘述。

必须明确,式(4)是针对具体DRG的物理图像而实施的,实质上它仅针对一个DRG图幅,而在该区图幅计算机使用中,仍可使实际区域坐标乘以一个常数 R/R_1 ,使得该区域实质仍使用同一模型。

在式(4)的模型下进行DEM内插,其间距自然就采用经纬度差。一般讲,1:5万图幅变换后,采用0.5°或1°的间距,再大区域也无缝无叠。必须着重指出,采用距离间距的DEM与采用经纬度间距定义的DEM,是性质迥异的两种DEM,文献[6]中已明确指明两者代数异构。理论和实践表明,前者的改算将多付出两倍的耗费及精度同量级的重复损失!DOM, DLG类同地形图,在大区域上并不存在无缝无叠的DOM, DLG集合,因此也应这样处理。

2.5 量度计算效率与精度

如此计算是否导致复杂度增加,效率降低?实际上对此问题有3个层次的回答。①计算的复杂度决定于问题要求:一要正确,其次要满足精度,计算量是次要的。不正确、不满足精度的计算是无用的。针对地球,距离和方位角应采用正确定义。②理论分析和实践表明,这种正确定义恰恰是最简单和方便的。若采用传统地图投影来定义准确的距离和方位,概念及形式要复杂得多,甚至无法解决。③实际计算中均是采用符合精度的收敛级数展开,本定义实际将使项数最少,次数最低,在现代微机上均能似实时完成,实际计算中也并不会感到存在显著停滞现象。

在全球范围内,似实时提供与分辨率相当的高精度可视化量算,指标先进,将具有十分重要的应用前景。另外,若与常规计算数值存在差异,当两者差异在精度范围以外时,理应抛弃常规计算结果。

3 本数学基础下的实验系统

在上述空间数学基础模型上,从1995年起,笔者就进行了大规模制作DRG、DEM以及集成矢、栅多分辨率数据,发挥两者长处的万象GIS软件及实用GIS工程实践。先后完成了武汉市供水信息系统,共集成1:25万、1:5万、1:1万、1:500及部分1:1000地图共3300余幅和供水设施信息数据;云南省武警边防总队信息系统,集成

了1:25万、1:5万、1:1万等地形图260余幅及边境地带11幅1:25万DEM、8幅1:5万DEM数据和诸多边防武警信息,二维、三维统一集成,并内嵌GPS、大区域DEM、精密量算及查询分析技术。其他还有孝感市防汛抗旱信息系统、咸宁市水利信息系统和国家海洋信息系统框架等。

实践表明,采用式(2)模型能迅速集成大区域乃至全国、全球的DRG、DEM和所需的矢量信息构成一个GIS专业系统。全区域可如同实地一样进行多分辨率的二维、三维结合的连续可视化浏览、各种信息查询及分析,其建设效率、性能价格比为一般同类系统的1.5个数量级,运行效率也成倍提高。

理论分析和实践表明,本项目提出的空间数学基础正是上述系统建设的重要基础,对于集成和使用全国性4D产品,进行大区域可持续发展的GIS建设,是有力保证和促进。

4 结 论

信息时代,信息是巨大财富,数据产品将成为重大产业,但这只有在数据是洁净的、标准的、适用的前提下才行。计算机环境下,地理信息系统、4D等地理数据产品不应继续沿用平面纸图上传统地图投影度量空间,而其水平投影应直接使用椭球面上的水平坐标和度量系统。此模型简单、严密,冲出传统地图投影的禁锢。

1) 采用椭球体地理空间(B, L, H)沿法线向二维曲面(B, L)投影作为空间数学基础,从根本上实现数字地球要求的多分辨率、大区域或全球无缝连续可视化、定位。

2) 以地图投影为基础的度量空间,扭曲了地球上各向异性的量度为各向同性的欧氏空间,使得大区域内的距离、方位、面积的可视化量算是不精确的,甚至是没有意义的,而基于这种量度的地理分析在大区域也缺乏必要的可信度。只有在本数学基础上,才可简便而又高效地实现可视化精密量算,只有精密的度量才是地理分析、决策正确的基础。

3) 只有在本模型统一的、标准的、通用的空间框架上,才能严密且简便地纳入地学世界广泛的三维、四维甚至更多维数据源、数据体及各种应用,才能避免那些没有实际意义的大量的数据转换耗费,实现地球的数字化。

4) 只有在本数学基础统一系统内,才能进行大区域的、全球的、地球椭球体上欧氏及非欧氏空

间的地理分析, 以适应资源、生态环境的大区域分析和经济、国防、全球化的需要, 这在传统概念的地图投影上基本没有可能, 这是真正的无缝无叠与策略性的无缝无叠的本质区别。

因而从传统的地图投影转换过来是方向, 是客观趋势。尽管它是基础, 也十分简单, 几乎涉及地学各个领域, 影响行业的绝大多数过程, 但这一进程必将进行, 其经济技术意义十分巨大。

致谢: 感谢胡毓钜老师对本文的帮助与指导。

参 考 文 献

1 Holland P, Reichart M, et al. The Global Spatial Data Infrastructure Initiative and Its Relationship to the Vision

of a Digital Earth. Toward Digital Earth, 1999, 7: 14~20
 2 陈俊勇, 李京伟. 走向 21 世纪的测绘技术创新. 中国测绘报, 2000-2-25
 3 陈 健, 晁定波. 椭球大地测量学. 北京: 测绘出版社, 1992
 4 龚剑文. 地图量算. 北京: 测绘出版社, 1991
 5 胡 鹏, 黄 伟. 地学数据库的数学基础. 武汉测绘科技大学学报, 1989, 14(3): 77~85
 6 李国建, 胡 鹏. GIS 中的数据转换与代数同构分析. 武汉测绘科技大学学报, 2000, 25(4): 312~317

作者简介: 胡 鹏, 教授, 博士生导师。现从事空间数学基础、地图代数、新型 GIS 软件工具、3S 集成等领域的理论与技术研究。

代表成果: 地图代数原理与方法; 万象 GIS 等。

E-mail: Phu@wustm.edu.cn

Research on System Space Mathematical Base of Large-scale GIS and the Digital Earth

HU Peng¹ WU Yanlan¹ YANG Chuanyong¹ LI Guojian¹

(1 School of Resource and Environment Science, Wuhan University, 129 Luoyu Road, Wuhan, China 430079)

Abstract: The map projection is a kind of topology transformation between two-dimensional fields in order to express the earth surface with limited plane maps. When choosing a concrete type of map projection, we usually consider three factors: map use, map scale, and location, shape, area of the region. Map projections are the space mathematical base of maps. GIS came of cartography, and maps are the main data source of GIS. Currently, most GISs take map projections as space mathematical base. Various GISs adopt respective reference systems and map projections adapting to the region and the scale, and all GISs corresponding to the state basic scales take Gauss projection as mathematical base in China. However, lots of practice has proved that large-scale GIS which take Gauss projection as space mathematical base have a lot of problems, e. g. large region can not be continuously visualized. Since spatial objects are digitized in respective maps which are discontinuous, complex map merging is necessary but hard to handle. Gauss projection is not applicable for integrating maps at different scales over a large range. The systems are limited to expand and update with development. It is difficult to define the third dimension and the time dimension in such complex two dimension measurement space. The fact that GISs use different reference systems is a main disadvantage for both GIS's development and the form of the Digital Earth.

The mathematical base of GIS is essential to unify the GIS established separately. It is also the premise for building the Digital Earth. After analyzing the status quo and the limitations of the space mathematical base of GIS, this paper points out definitely that the geodetic coordinate system is uniform, which can show the location of any point of the globe exactly and uniquely in form of (B, L, H) and is the most proper reference system of large-scale GIS and Digital Earth. Moreover, this paper also puts forward a set of practical model of the standard "map projection", that is, R multiplied L is X , and the product of R and B is Y , where L is the longitude, B is the latitude, and their units are radian. R is the mean curvature radius of the earth.

The model is similar in form to the cylindrical equidistant projection, but they differ from each other in essence. The first one is the plane view of the geodetic coordinate system's horizontal projection, and it provides the exact 2D geometry measurement space on the global earth surface. The view system and the measurement space are separate in the model, but the latter is the plane view and the plane measurement system.

Finally, this paper introduces a DRG system based on this model.

Key words: digital earth; large-scale GIS; map projection; spatial mathematical basis

About the author: HU Peng, professor, Ph. D supervisor. His main research field is GIS theories and technology, including the basis of spatial mathematics map algebra, new GIS software tools and 3S integration. His typical achievements are the theories and methods of mapping algebra etc.

E-mail: Phu@wtusm.edu.cn

(上接第 289 页)

area and shallow sea is selected. A local gravity geoid of the district is computed with all the mean girded gravity values in the district. Secondly the land part of the local gravity geoid is fitted to Chinese mainland geoid with some fit-parameters, and the latter keeps in variation during the fitting. Thirdly the Chinese ocean geoid is merged into Chinese mainland geoid with the above fit-parameters. So a new Chinese quasi geoid (CQG2000) covering whole China land and sea territory is obtained with $15' \times 15'$ resolution and dm accuracy. CQG2000 has been examined by 80 GPS leveling points of the Chinese crustal movement monitoring network. The examining results demonstrate that the accuracy of the new quasi geoid is reliable, i. e. the absolute accuracy of the CQG2000 is higher than ± 0.3 m in the east of longitude E102°, ± 0.4 m in the west of E102° and north of latitude N36°, $\pm (0.4 \sim 0.6)$ m in the west of E102° and south of latitude N36°.

Key words: chind; gravity; geoid; satellite altimetry; GPS leveling

About the author: CHEN Junyong, Geodesist, Ph. D, member of Chinese Academy of Sciences. His research field includes Geodesy. About 140 articles and 9 works have been published in the name of the 1st author.