

由栅格等高线快速建立 DEM 的新方法

——CSE 法

吴艳兰¹ 胡 鹏¹

(1 武汉大学资源与环境科学学院, 武汉市珞喻路 129 号, 430079)

摘要: 介绍了一种由等高线版图通过图像处理, 准确、高效地建立 DEM 的新方法——CSE (color substitute elevation, 颜色替换高程) 法。在分析其算法精度的基础上, 说明该方法相对于传统 DEM 建立方法的特点。

关键词: DEM 建立; 图像处理; DEM 内插

中图法分类号: P231.5; P286.6

DTM (数字地面模型) 是描述地面诸特性空间分布的有序数值阵列, 具有广阔的应用领域。而 DEM (数字高程模型) 是 DTM 的一个地形分量, 是各种地学分析和工程设计的重要基础性数据。利用计算机可快速地将 DEM 数据转换为透视图、等高线图、坡度图、剖面图、晕渲图以及与 DOM (数字正射影像) 叠合而成的景观图等 DEM 衍生产品, 也可任意量算体积、表面积、空间距离等工程数据。目前, DEM 生产已成为我国测绘保障内容之一, 全国 1:25 万 DEM 数据已经建立, 1:5 万 DEM 数据正在生产。

传统建立 DEM 的方法主要有 3 种: ①用数字摄影测量的方法利用航摄立体像对建立 DEM。该方法采点稠密, 生产周期长, 且需充足的航摄资料和昂贵的精密设备。②基于地图扫描矢量化法。这种方法对原始资料和设备要求不高, 但工作量大, 生产周期较长。③野外实测得到离散地面点数据直接构建 TIN, 建立 DEM。该法获取的数据能达到很高的精度, 但工作量大, 效率不高, 且费用昂贵, 不适合大规模的 DEM 数据采集任务^[1]。

为了缩短 DEM 的生产周期, 降低成本, 推动我国 DEM 数据生产的步伐, 本文介绍了一种利用地图生产中间资料——等高线分版图, 通过扫描、预处理, 由栅格等高线数据直接快速建立 DEM 的 CSE 法 (color substitute elevation, 颜色替

换高程)。

CSE 法的基本思想是: 运用图像处理的方法, 使得图幅范围内同一条等高线上的所有像元都具有同一种颜色值, 再利用等高线栅格数据和颜色-高程对照表进行高程代换, 以获取致密的等高线数据。这种数据在图幅范围内的等高线延伸方向上是致密的, 也即当考察图幅任一纵横坐标为 x, y 的垂直剖面与等高线相交状况时, 有: ①当它与等高线相交时, 那么其上相邻交点必是其相邻等高线的或其本身的; ②当剖面线为 $y = ax + b$ 的任意垂直剖面或剖面线为内图廓线时, 情况与上述一样。

与基于地图等高线扫描矢量化法相比, CSE 法可成组将等高线染色, 由程序自动进行颜色-高程代换, 从而避免了矢量化法逐条跟踪等高线和逐条编辑赋高程值的大量重复劳动, 达到快速获取等高线数据的目的。实践证明, 获取同一幅地形图的等高线数据, 矢量化法平均约需 9d, 而 CSE 法仅需 2.5d, 其工作效率提高 3 倍以上。另外, 在 DEM 内插方面, 矢量化法需先利用等高线矢量数据建立不规则三角网 (TIN), 并进行编辑, 然后再在 TIN 的基础上进行规则格网 DEM 内插。而 CSE 法由于获取的是致密的等高线数据, 可直接利用等高线栅格影像剖面插值法进行规则格网 DEM 内插, 其内插极限精度为 1/2 等高距, 内插时间由矢量化法的工作站上 2h/ 幅提高到微

机上 30 min/幅。

1 CSE 法的原始数据获取

在地图生产过程中,一幅全要素地形图是由若干幅单要素图叠置而成的,其中等高线版图描述了地形空间分布特征。该图要素单纯,等高线划连续,特别适合用图像处理的方法获取等高线栅格数据。CSE 法的具体工作流程见图 1。

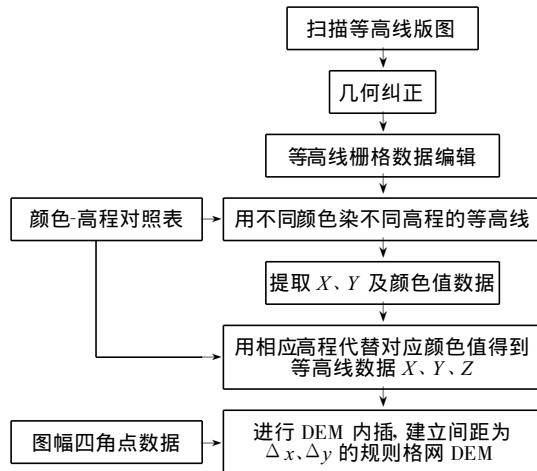


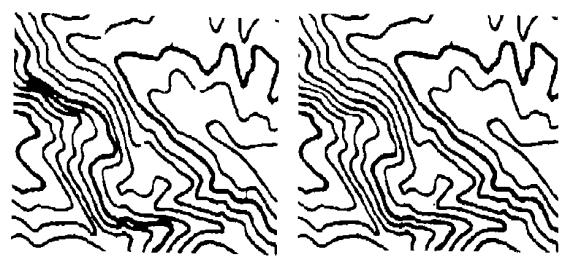
图 1 CSE 法的工作流程

Fig. 1 Process of CSE

此法包括 4 个主要的工作步骤：

1) 对等高线栅格数据进行编辑, 包括分离粘连的等高线和连接断开的等高线, 目的是尽量保证每根等高线图像连续、独立、无粘连(图 2)。与等高线矢量化的编辑工作具有本质不同的是, 该法直接在等高线扫描图上进行分离或连接等高线操作, 对于已经是连续、无粘连的等高线不需处理(工作量较小), 最后得到的是等高线图像数据(无人工编辑误差)。而等高线矢量化的编辑是以等高线影像为背景, 跟踪每一条等高线, 最后得到的是等高线跟踪采集点的矢量数据(增加人工跟踪误差)。

2)建立颜色-高程对照表。该表可根据图幅等高距的情况采用两种方式建立。


①固定等高距图幅: 全图只有一种等高距, 可采用下列公式建立对照表:

$$H = H_0 + \Delta h \times \text{ColorIndex}$$

式中, H 为高程值; H_0 为图幅基准高程; Δh 为图幅等高距; ColorIndex 为颜色索引值。

②多等高距图幅:全图除基本等高距外,还有如 $1/2$ 距、 $1/4$ 距等其他等高距,需根据情况指定高程与颜色索引值的对照关系。

(如 12 号色, 代表 2 400m 的高程), 用鼠标点击高程为 2 400m 的等高线的两侧(如图 3 中的两个十字丝位置), 程序自动探测两点间的等高线数目为 5, 并将颜色索引值增 1(地势升高)或减 1(地势降低), 依次将每根等高线像素赋予代表其高程的颜色。需指出的是, 一幅图中所有等高线的高程值一般不会超过 256 种, 本方法对每一幅图提供了 256 种不同的颜色, 这足以表示所有的等高线。

(a) 原始等高线图

(b) 编辑后的等高线图

图 2 编辑前后的等高线图像

Comparing the Original Content

4) 代换高程。用相应高程值代换等高线影像数据集 $\{X, Y, \text{Color}\}$ 中的Color码值, 得到图幅上全部等高线原始数据集 $\{X, Y, Z\}$, 然后进行DEM内插。

CSE 法的普染等高线和代换高程工序等价于矢量化法中的等高线高程赋值工序。

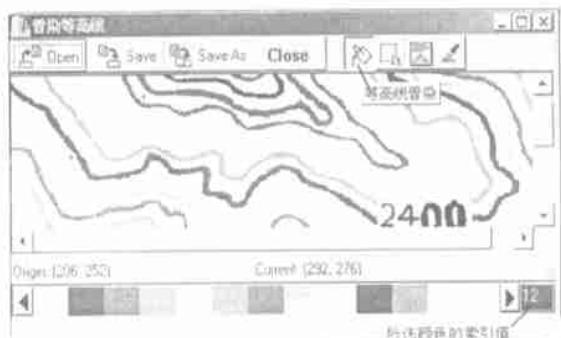


图 3 普染等高线

Fig. 3 Dyeing the Contour Lines

2 DEM 内插

CSE 法中的 DEM 内插采用的是等高线剖面插值法。其基本原理是: 若待插点 p 正好位于等高线上, 则此点的高程可直接得到。否则, 在 4 个方向上进行线性内插, 并取平均值(图 4)。这种内插法符合人工线性内插原理, 可靠性较好, 比

移动面法精确。因为该法中参与内插的点是在各方向上离待插点最近的点, 避免了同一方向的多个点, 有助于精度的提高。

然而, 等高线剖面内插法的应用并不广泛, 这是受矢量形式的等高线数据的限制。因为在矢量等高线数据上计算待插点的4方向线与等高线的交点, 需将离散的等高线数据建局部曲线方程, 再求曲线与方向线的交点, 计算量很大且不实用。而CSE法获取的等高线数据是致密的等高线栅格点, 将此数据装入数据库, 可利用数据库的索引机制和查询技术, 能够快速找到交点。例如, 将等高线数据库按 x 排序, 可快速找到待插点 p 的水平线与邻近等高线的相交点, 从而实现DEM的快速内插。

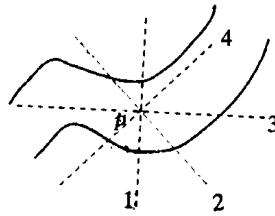


图4 等高线剖面内插

Fig. 4 Section Interpolation Based on Contour Raster Image

3 DEM 精度检查和算法分析

检查DEM精度的方法有多种, 在缺乏实测真值的情况下, 一般以地形图为标准。可以采用对照地形图进行逐行抽点检查, 这种检查方法效率较低; 也可将DEM内插等高线回放图与原等高线图按公里格网进行叠合检查, 这种检查方法直观简单。图5和表1是用上述方法检查云南1:5万地形图间距为25m的DEM数据的精度状况。

可见, 用CSE法生产的DEM全图极限误差为 $1/2$ 等高距, 该算法分析如下。

1) 一般处在两等高线间的格网点, 显然其精度属于 $O(h^2)$, 即受二次项的影响很小。由于地形图在对应比例尺上相邻等高线间的间距小, 一般均可认为是平面, 且4方向内插取均值, 误差是很小的。严格而言, 当相邻等高线间为一未知曲面时, 由于相邻等高线特征, 其剖面曲线展开时, 线性为相邻等高线间高程差的主项(即主要部分的变化是线性的), 非线性部分变化不可能超过 $0.5\Delta h$ (见图6)。

2) 在等高线测量和绘制时, 一般相邻等高线

也均是线性状况下形成的, 当某部分非线性特征明显时, 则相应有 $1/2$ 距、 $1/4$ 距等高线辅助表达。CSE法只要顾及此部分进行染色, 方法通用性无疑, 精度则有更大提高。

3) 最弱点在相等等高线间, 其极限情况是, 正向地貌是平的, 因此误差小于 $+0.5\Delta h$; 或接近另一条等高线, 则误差小于 $-0.5\Delta h$ 。这样, 该法最弱点极限误差为 $0.5\Delta h$, 按误差理论, 中误差为 $(1/6)\Delta h$ 。用实际数据检测, 都符合分析结论。

4) 该算法可方便地加上二次差分及三次差分予以改进, 这是其他方法难以做到的。

图5 由DEM恢复等高线与原等高线的叠合图

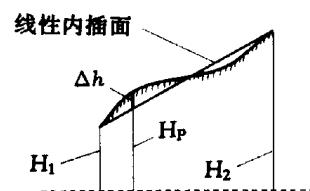

Fig. 5 Superimpose Original Contour Lines with New Contour Lines Comeback from DEM

表1 CSE法的DEM内插精度

Tab. 1 A Description Table for DEM Interpolation

Precision with CSE

等高距/m	检查点数	最大误差/m	平均误差/m	中误差/m
20	36	9.75	2.25	4.51

H_1, H_2 相邻等高线高程

H_p : 待插点高程

ΔH : 待插点高程误差

图6 等高线剖面内插误差

Fig. 6 Error in Section Interpolation Based on Contour Raster Image

5) 本算法是采用数据库高效索引来进行内插的, 数据量、所需数据密度(对于实际情况)没有限制, 内插效率很高。

6) 针对原始扫描数据诸多不规范之处, 采用

了相近交点惟一匹配、边界数据点“齐边”等规范化方法以及运用地图代数处理原始扫描图像, 极大地减少了手工编辑工作量。

7) 该法几何纠正是将扫描图像变换为指定地图投影, 使上述内插不是在高斯平面上进行, 而是直接、严密地在椭球面上进行, 方法原理完全一样, 只是将 X, Y 换为大地经纬度 B, L 。从这一点而言, 本方法在理论和实践上不同于其他方法。

8) 对于等高线上内插 DEM 实际精度问题, 理论分析表明, 应该采用数值逼近中内插模型的截断误差的概念, 而不应采用测量中习惯使用的中误差的概念。这样, 该方法中采用的已知点数据与当前广泛使用的 TIN 结构方法相同, 即均采用“两相邻等高线间的地表视为平面”的假定。大量图幅 DEM 建立实践表明, 当区域内有一定数量的等高线时, DEM 建立的质量和效果较为理想; 但对只存在少量等高线时(如只有 1~2 根等高线且局限于图幅局部)的平坦地区, 本方法建立的 DEM 将不能显示它的精细结构。然而误差理论表明, 精细结构只有在确保相应精度的可靠性的理论分析和实际规范要求下才有意义, 而一般地图上原始等高线图像点均具有 $0.3\Delta h$ 的中误差, 过分高的要求并不实际。因此, 国家测绘局关于数字化暂行标准^[2, 3]中把建立 DEM 高程最大误差规定为 $0.5\Delta h$, 而本文通过理论分析和实践得出, CSE 法的极限误差为 $0.5\Delta h$, 已完全满足此标准。

笔者用 CSE 法建立了云南边境地区 1:25 万 DEM 12 幅、1:5 万 DEM 7 幅和湖北省孝感地区 1:5 万 DEM 6 幅以及其他大量图幅 DEM。大量实践证明, 由栅格等高线快速建立 DEM 的 CSE 法是完全可行的, 采用图像处理的方法可快速获取地形图上的等高线数据, DEM 内插计算简单、快速、可靠, 其生产周期短, 生产成本较低, 适合推广使用。

参 考 文 献

- 1 李志林, 朱 庆. 数字高程模型. 武汉: 武汉测绘科技大学出版社, 2000
- 2 国家测绘局. 1998 年数字化生产技术暂行标准(附录), 1998
- 3 国家测绘局. 1:5 万数字高程模型(DEM)生产技术规定(暂行本), 1998
- 4 吴艳兰. DEM 的可视化研究及若干应用: [学位论文]. 武汉: 武汉测绘科技大学, 1998
- 5 张卫柱. 基于扫描等高线快速建立 DEM 方法的研究. 西安测绘研究所学报, 1999, 19(2): 62~65
- 6 祝志明, 熊 顺, 王相东. “组合法” DEM 生成软件的研究. 西安测绘研究所学报, 1999, 19(2): 32~34
- 7 柯正谊, 何建材, 池天河. 数字地面高程模型. 北京: 中国科学技术出版社, 1993

作者简介: 吴艳兰, 博士生, 助教, 现从事 DEM 的建立、地形可视化的研究及其软件开发和地貌综合研究等。代表成果: 云南边防地区电子沙盘系统。

E-mail: wylm@263.net

The New Method for Quickly Generating DEM Based on Raster Contour — CSE

WU Yanlan¹ HU Peng¹

(1 School of Resource and Environment Science, Wuhan University, 129 Luoyu Road, Wuhan, China, 430079)

Abstract: CSE is a new method for quickly generating DEM based on raster contour. DEM is the basic model for generating three-dimensional terrain feature and it has a wide variety of application in GIS, geology analysis, civil engineering and so on. Generally speaking, there are three main methods for building DEM. One is based upon stereomeasurement with features of needing sufficiency photogrammetry stereo-mate and expensive instruments. The second is built upon contour digitizing with the peculiarities of low request of the data source and instruments but a long production cycle. The third is built upon the outdoor measurement with the characteristics of high precision, high cost and low efficiency.

This paper introduces a new method named CSE (color substitute elevation) which is used for quickly generating DEM from a contour map by image processing. CSE includes four steps: ① Editing the contour image, including wiping off the conglutination of differing contour lines and connecting the disconnect contour lines in order to make every contour line substantive and continuous. ② Drawing out a corresponding table of elevation and color index according to the circles of contour lines in the contour map. ③ All pixels of the same contour lines are dyed with the same color by image processing according to a color-elevation corresponding table and the output of the map is a set of $\{X, Y, \text{ColorIndex}\}$. ④ The value of the color index in the set is substituted with the corresponding elevation in order to get the compact contour data of the map. Then section interpolation based on contour raster image is used for generating grid DEM. Compared with the method of digitizing contour for building DEM, CSE has characteristics on 4 facets. For editing contour data, CSE only processes the conglutinant or disconnect contour lines and digitizing contour method needs to follow every contour lines; On the facet of original data collect precision, CSE is without edit error, and digitizing contour method has to add manual following error; When setting the elevation value to contour lines, many contour lines can be dyed in groups, then the elevation value substitutes the color index automatically with CSE, but digitizing contour method does it one by one; In addition, for DEM interpolation, due to getting compact contour line data, CSE can do section interpolation based on contour raster image quickly by the technology of database index, but with digitizing contour method, a TIN (triangulated irregular network) is built from contour vector data firstly, and some morbid triangles must be edited, then DEM interpolation is carried out based on TIN. As the result of above characteristics, the production cycle is shorten by about 3 times with CSE method and the maximum error of DEM is less than a half of the contour-interval in the map. A number of practices have proved that the method for quickly generating DEM based on raster contour—CSE is absolutely viable.

Key words: DEM generation; image processing; DEM interpolation

About the author: WU Yanlan, Ph. D candidate, assistant professor. Her major researches are on DEM generation, terrain visualization and software development, relief generalization and GIS engineering application. Her typical achievement is the electronic sand table system of the frontier defence area in Yunnan province.

E-mail: wylmq@263.net

启 事

敬请各位作者用 E-mail 投稿传送过来的同时, 将打印稿(一式二份)也寄过来。谢谢合作。

本刊编辑部