

遗传算法在城市道路控制点标高优化设计中的应用

王新生¹ 姜友华² 涂 超¹

(1 武汉大学资源与环境科学学院, 武汉市珞喻路 129 号, 430079)

(2 武汉大学城市建设学院, 武汉市珞喻路 129 号, 430079)

摘要: 建立了进行城市道路控制点标高优化设计的数学模型。从这个数学模型的结构可以看出, 这个模型是非线性的和不确定性的, 采用传统的搜索方法不大可行, 但遗传算法对解决这类问题十分有效。本文提出了遗传算法一种新的应用方面, 结果表明, 遗传算法或许是进行城市道路控制点标高优化设计中一种比较好的方法。

关键词: 城市道路控制点标高; 优化设计; 遗传算法

中图法分类号: U412.24

城市道路控制点标高设计主要包括道路交叉点及中途控制点的标高设计。实际中, 常根据道路纵坡的要求, 从某个基本确定的道路控制点标高出发, 依此推算其他各点标高。这种方法工作量很大, 且结果常常不是最优的, 不能使工程最经济合算。笔者曾通过简化问题, 如假定道路施工全填或全挖, 同时根据其他条件来确定规划后道路的大致排水状况, 从而将模型的约束条件和目标函数简化为线性的、确定性的模型, 最后利用线性规划方法进行问题求解, 取得了一定的成果^[1]。但这种方法的应用范围有很大的局限性。鉴于此, 本文探讨了采用遗传算法(GA, genetic algorithms)来解决城市道路系统中控制点标高优化设计的问题。

1 数学模型

根据文献[1], 确定城市道路控制点标高, 实质上是求在满足道路纵坡的大小要求和施工工程最经济条件下的控制点标高问题。

1.1 约束条件

城市道路控制点标高直接关系到道路纵坡的大小, 而道路纵坡大小依道路等级及路面类型不同而有一定的控制范围。据此, 每段道路均可建

立一个约束条件。由任意两点 A、B 间道路纵坡限制所构成的约束条件为:

$$\min(\tan \alpha_{AB}) \leq \frac{|h_A - h_B|}{L_{AB}} \leq \max(\tan \alpha_{AB})$$

式中, h_A, h_B 为两点设计标高, 且 $h_A, h_B \geq 0$; L_{AB} 为 A、B 两截面间的距离; $\tan \alpha_{AB}$ 为道路纵坡容许值。道路系统中所有道路段的约束条件组成模型的约束条件。

1.2 目标函数

进行道路控制点标高设计, 其目的之一是要使工程的土石方量最小。土石方量计算分两种情况:

1) 两截面性质相同, 皆为挖方和皆为填方时, 道路的土石方量为:

$$V_{AB} = \frac{1}{2}(|H_A - h_A| + |H_B - h_B|)D_{AB}L_{AB}$$

式中, H_A, H_B 为两点现状标高, 且 $H_A, H_B \geq 0$; V_{AB} 为道路的方量; D_{AB} 为道路设计宽度。

2) 两截面性质不同, 若 A 截面为挖方、B 截面为填方, 或者 A 截面为填方、B 截面为挖方时, 道路的土石方量为:

$$V_{AB} = \frac{1}{2} \cdot \frac{(H_A - h_A)^2 + (H_B - h_B)^2}{(|H_A - h_A| + |H_B - h_B|)} \cdot D_{AB}L_{AB}$$

总土石方量则为道路系统中每段道路土石方

量的总和。最优的道路控制点标高设计方案要使总土石方量最小, 故目标函数为:

$$\min V(h_A, h_B, h_C, h_D, \dots) = V_{AB} + V_{BC} + V_{CD} + \dots$$

如果进一步考虑各道路段的施工费用和土石方量运费, 则需要对目标函数做一定的改动。如果要进行约束条件表达式中绝对值符号的化简, 即设计时考虑多种道路段组合, 则组合的数量为 2^n (n 为道路网中道路段的数量)。另外, 在目标函数中也存在绝对值符号的化简和函数非线性的问题。笔者曾尝试将约束条件和目标函数转化为非线性形式(去掉其绝对值符号), 采用非线性规划的方法求解, 但问题解的搜索空间很大, 在很长一段时间内都未找到问题的解, 因此, 这种解决方法不大现实。但这类问题却特别适合采用遗传算法来解决。

2 遗传算法

2.1 遗传算法的基本原理

遗传算法是 20 世纪 50 年代末和 60 年代初, 由美国 Michigan 大学的 J. Holland 教授和他的学生在研究自适应系统时提出并逐步发展起来的一种全局优化搜索算法^[2,3]。

遗传算法有复制算子、杂交算子、变异算子 3 个基本算子^[4]。

2.2 遗传算法的特点

遗传算法利用了生物进化和遗传的思想, 所以它有许多与传统优化算法不同的特点^[3]。

1) 遗传算法是对问题参数或变量编码(染色体)群进行优化, 而不是参数或变量本身。

2) 遗传算法的搜索是从问题解的串开始, 而不是从单个解开始。

3) 遗传算法使用适应度函数值(即适应值)这一信息进行搜索, 而不是导数等其他信息。

4) 遗传算法使用的复制、杂交、变异这 3 个算子都是随机操作而不是确定规则。

遗传算法使用随机操作, 但并不意味着遗传算法是简单的随机搜索, 遗传算法是使用随机工具来指导搜索向着一个最优解前进的。

5) 遗传算法最善于搜索复杂地区, 从中找出期望值高的区域, 但在解决简单问题时效率不高。

虽然有关遗传算法的搜索机制、基本理论等还只是正在探索中的问题^[5], 但由于以上特点, 它受到了各领域的广泛关注^[2~11]。本文尝试遗传算法的一种新的应用——城市道路控制点标高

的优化设计。

3 应用

图 1 为某区的道路网规划图。据规划前期工作, 该区路网规划已初步完成, 确定了干道大致走向、干道交叉点位置和方位坐标。设道路网中各点现状高程均为 100m, 设计后要求 p_1 标高为 103m。除了 $p_5 \sim p_{10}$ 、 $p_6 \sim p_{11}$ 、 $p_7 \sim p_{12}$ 的长度为 800m, $p_{10} \sim p_{15}$ 、 $p_{11} \sim p_{16}$ 、 $p_{12} \sim p_{17}$ 为 2 000m 以外, 其余各道路段长度均为 1 000m。 $p_2 \sim p_6 \sim p_{11} \sim p_{16} \sim p_{20}$ 、 $p_9 \sim p_{10} \sim p_{11} \sim p_{12} \sim p_{13}$ 为区干道, 路幅宽度为 30m, 其他道路为区支路, 均为 15m。按照路面纵坡的设计要求, 30m 宽的道路段的路面纵坡应控制在 0.003 至 0.06 之间, 15m 宽的道路段应控制在 0.003 至 0.08 之间^[1]。根据这些条件, 可以建立起具体问题的数学模型。

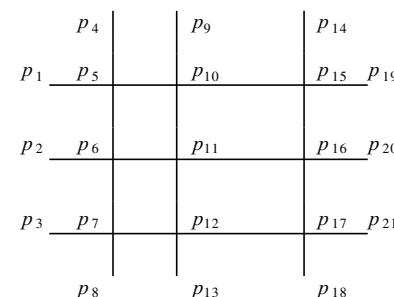


图 1 某区道路网规划示意图

Fig. 1 Designing Road Network of a Region

在遗传算法的具体应用研究中, 主要考虑以下几个问题:

1) 编码问题。问题空间是由遗传算法表现型个体(有效的候选解)集所组成的空间, 遗传算法空间是由基因型个体所组成的空间。编码是指由问题空间向遗传算法空间转移的操作, 反之称为译码。本例采用基于 {0, 1} 符号集的二值编码形式。每个未知点标高的十进制实数值转换成 8 位长的二进制码, 码串越长, 二进制码与实际变量间的误差越小, 但计算机的存储、计算开销越大。另外, 当问题中未知标高的控制点很多时, 由于标准遗传算法的二进制存在所谓的“Hamming Cliffs”问题^[2]和精度问题, 需要采用实数编码方法。

2) 适应度函数问题。本例直接采用目标函数作为适应度函数, 但由于存在约束条件, 需要将约束问题转换成无约束问题。作为对策, 笔者采用一种惩罚方法(penalty method)^[12], 对个体违背约束条件的情况给予惩罚, 并将惩罚体现在适应度函数中。例如, 对以下约束问题:

$$\begin{aligned} & \min f(x) \\ \text{s. t. } & g_j(x) \geq 0, j = 1, 2, \dots, l \end{aligned}$$

可转换成无约束问题:

$$\min (f(x) + M \sum_{j=1}^l [\min(0, g_j(x))]^2)$$

其中, M 是一个很大的正数。

编程时, 采用 IF … THEN 语句实现目标函数的选择。

3) 确定遗传算法算子和参数。本例应用中, 复制、杂交和变异 3 个算子分别采用最佳个体保存方法、一点杂交和一点点位变异算子。通过多次试验, 最后选定种群数目为 100, 杂交概率 $P_c = 0.6$, 变异概率 $P_m = 0.08$ 。当采用标准遗传算法求解时, 运算到 300 代时即达到问题的最好解, 这时总土石方量为 $857\ 691.96\text{m}^3$, 各点的设计标高见表 1。如果根据计算的标高结果来判断道路段的起伏等状况, 会发现通过遗传算法计算所得出的结果是比较好的。

关于本问题的其他求解方法, 根据笔者的调

查研究, 除了根据具体条件来实施人工的设计外, 目前尚无其他更好的求解办法。人工设计的方法是根据给定条件和道路纵坡排水要求等, 先确定各道路控制点的挖填状况, 再依据道路纵坡的具体约束要求, 依次推算各道路控制点标高, 但这种设计并不能保证结果比较好。表 1 是一种人工计算结果, 道路施工的总土石方量为 $1\ 002\ 000\text{m}^3$, 很明显, 结果没有通过遗传算法计算的好, 且费时费工。如果问题的未知设计标高的控制点增加到几百个甚至更多(这在实际中是可能发生的), 计算更是繁琐, 问题的最优解更是不能获得。这或许类似数学中一个经典问题——货郎担(TSP)问题, 即使目前存在该问题的一些解法, 问题也肯定存在最优解, 但当问题的规模很大时(城市数量达到数千个或数万个, 甚至更多), 在目前的计算机技术条件下, 也无法在有限的时间内获得问题的最优解^[11]。本问题是否还有一些启发式解法, 有待进一步研究。

表 1 各道路控制点设计标高/m

Tab. 1 Elevation of Road's Control Points by GA Calculation/m

控制点	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}	p_{11}
GA 设计	103.00	98.86	101.06	101.06	97.45	102.55	97.45	101.06	94.94	101.61	98.24
人工设计	103	100	103	103	100	103	100	103	100	103	100
控制点	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}	p_{19}	p_{20}	p_{21}	
GA 设计	101.29	94.45	102.00	94.94	105.06	94.94	102.78	102.00	99.10	102.31	
人工设计	103	100	100	97	106	97	100	100	103	100	

参 考 文 献

- 王新生. 线性规划原理在城市道路控制点标高优化设计中的应用. 武汉测绘科技大学学报, 1995, 20(3): 269 ~ 272
- 郭革新, 熊兴华. 演化计算——探讨测绘最优化问题的新技术. 测绘通报, 1999(9): 12 ~ 15
- 张晓绩, 戴冠中, 徐乃平. 一种新的优化搜索算法——遗传算法. 控制理论与应用, 1995, 12(3): 265 ~ 273
- 陈国良, 王煦法, 庄镇泉, 等. 遗传算法及其应用. 北京: 人民邮电出版社, 1999
- 徐宗本, 陈志平, 章祥荪. 遗传算法基础理论研究的新近发展. 数学进展, 2000, 29(2): 97 ~ 114
- Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. MA: Addison-Wesley, 1989
- Feng C M, Lin J J. Using a Genetic Algorithm to Generate Alternative Sketch Maps for Urban Planning. Computers Environment and Urban Systems 1999, 23(2): 91 ~ 108
- Krzanowski R M, Raper J. Hybrid Genetic Algorithm for

Transmitter Location in Wireless Networks. Computers Environment and Urban Systems 1999, 23(5): 359 ~ 382

- 刘勇, 康立山, 陈毓屏. 非数值并行算法(第二册). 北京: 科学出版社, 1998
- 周明, 孙树栋. 遗传算法原理及应用. 北京: 国防工业出版社, 1999
- 金炳尧. 最优化计算中的若干新技术. 科技通报, 2000, 16(2): 119 ~ 124
- 《运筹学》教材编写组. 运筹学. 北京: 清华大学出版社, 1990. 183 ~ 190

作者简介: 王新生, 博士生, 副教授。现主要从事地理信息系统和计算几何、优化理论在城市与区域规划中的应用研究。代表成果: The application of the theory of industrial department structure in designing industrial map set of economic atlases; 线性规划原理在城市道路控制点优化设计中的应用; 场论理论在经济客体地位评价中的应用; 一种用于界定经济客体影响范围的新方法——Voronoi 图。已发表论文 20 余篇, 出版专著 2 部。

E-mail: wxsgis@21cn.com

The Application of Genetic Algorithms in Designing Urban Road's Elevation

WANG Xinsheng¹ JIANG Youhua² TU Chao¹

(1 School of Resource and Environment, Wuhan University, 129 Luoyu Road, Wuhan, China, 430079)

(2 School of Urban Studies Wuhan University, 129 Luoyu Road, Wuhan, China, 430079)

Abstract: It is an important task for urban designers to calculate the urban road's elevation. In this paper, the authors first analyze the factors which influence urban road's elevation designing: (a) road longitudinal slope conformed to the demands of traffic and road surface drainage, (b) the least construction cost, and (c) other design requirements. In general, the designers calculate the elevation of next road surface control point based on one known elevation of one control point, the elevation of the rest unknown road control points can be deduced one by one through such method. Once the elevation of one road surface control point changes, the elevation of others is accordingly adjusted, and so designers must spend much time finishing this work, and the resulting design scheme isn't the best one. For example, the cubage of excavation and fill of earth and stone is not the least, and transportation expenses are not the least, either. The authors establish the genetic mathematical model on designing urban road's elevation based on the corresponding constraint conditions and the objective of the least cost, and state that this mathematical model is a complex non-linear one. It is very difficult, even unfeasible to get the solution of it using those traditional searching methods or Operational Research. According to the authors' research, recently there is really no feasible method to handle it. Genetic algorithms (GA) is a robust searching technique, and it is useful and effective for dealing with this kind of mathematical model. This paper is an attempt to make use of simple genetic algorithms (SGA) for designing urban road's elevation, and it shows that GA is perhaps a promising approach in comparison with the traditional manual method.

Key words: urban road's elevation; optimal design; genetic algorithms

About the author: WANG Xinsheng, Ph. D candidate, associate professor. His interested research fields are geographical information systems, application of computational geometry and genetic algorithms (GA) in urban and region planning. His representative research articles are the application of the theory of industrial department structure in designing industrial map set of economic atlases; the application of linear programming in designing urban road's elevation; the application of theory of gravitational field to the evaluation of the economic object's status; a new approach to delimitate economic object's influence coverage—Voronoi diagram, etc. He has authored two books and 20 scientific publications.

E-mail: wxsgis@21cn.com