

数码城市 GIS 的设计与实现

朱 庆¹ 李德仁¹ 龚健雅¹ 熊汉江¹

(1 武汉大学测绘遥感信息工程国家重点实验室, 武汉市珞喻路 129 号, 430079)

摘要: 在介绍用于数码城市 GIS 建设的 CCGIS 体系结构的基础上, 讨论了不同细节层次的三维建模方法、集成化空间数据库管理方式, 包括基于面向对象思想的矢量、影像和 DEM 三库一体化的空间数据库模型和三维动态可视化表示机制等。该系统已被用于上海、深圳和北京等城市的数码小区示范工程建设。实践证明, 它是建设数码城市的有效平台。

关键词: 数码城市; GIS; 细节层次; 数据库集成

中图法分类号: P208

全球化、信息化是未来城市经济发展的总趋势, 实现城市信息化是一个城市融入全球化浪潮的必要条件。广泛开发各类城市资源并实现资源共享, 加强和推进城市信息化建设, 将成为推动城市走向现代化新的动力。城市信息化最显著的特征就是“数字城市”的建立。数字城市是综合运用 GIS、遥感、遥测、网络、多媒体和虚拟仿真等高技术手段, 对城市的基础设施、功能机制进行自动采集、动态监测管理和辅助决策支持的技术服务系统。数字城市提供给人们一种全新的城市规划建设与管理和工作生活的理念与调控手段, 能适应并预测城市的变化, 尤其是 GIS 的空间信息综合处理能力与直观表现能力, 在处理城市复杂系统问题时, 能帮助人们更好地建立起全局观念与模拟直观感。面对日益提高的城市化水平, 以手工为主的传统管理方式已越来越不适应城市迅速发展的需要, 开发与实施城市规划、建设、管理与服务的数字化工程势在必行。数字城市的基础是数字城市景观模型, 简称数码城市 (CyberCity), 它在城市规划、设施管理、电信与旅游应用等方面明显优于当前的二维 GIS。数码城市随着 IT 水平的提高, 在经历了文档式、二维数码城市后, 目前正向三维数码城市方向快速发展。

三维数码城市的产生可以追溯到 20 世纪 80 年代初, Skidmore Owings 和 Merrill (SOM) 在三维城市模拟上有所表现。SOM 的芝加哥电信结

构模型激发了这个领域的早期工作。奥地利、瑞士和德国等也都进行了卓有成效的数码城市研究与示范应用工作。随着万维网、虚拟现实技术及空间信息技术的发展, 三维数码城市在世界各地发展起来, 并逐步成为城市 GIS 发展的主流。建设数码城市需要解决若干关键技术问题, 如三维重建、数据库管理和虚拟现实技术等。为此, 在 GeoStar 自主版权基础 GIS 软件研制的基础上, 笔者专门为数码城市建设设计了 CCGIS。CCGIS 的体系结构参见文献[1]。

1 三维建模与编辑

数码城市中, 建筑物与市政设施是最重要的部分。因此, 在三维数码城市中, 建筑物与市政设施的三维重建是一项很重要的工作。根据不同细节层次 (level of detail, LOD) 的需要, CCGIS 可以分别采用以下不同的数据源和建模策略重建三维城市模型, 如图 1 所示。为了明确区分不同细节程度或不同尺度的模型, 笔者赞同文献[2] 的观点, 使用不同的空间维数来表达 (维数越大, 细节程度越高; 反之, 细节水平越低)。比如, 点是一维的, 水平线是二维的, 而 DEM 也只是 2.5 维的表面; 建筑物实体的外接 BOX 框也被认为是 2.5 维的, 而具有真实外部形状特征的建筑物表面模型 (如具有特殊屋顶) 达到了 2.75 维; 真三维实体则

应该是完整描述建筑物外部形状特征(包括窗户、烟囱等)和内部构造特点的模型。

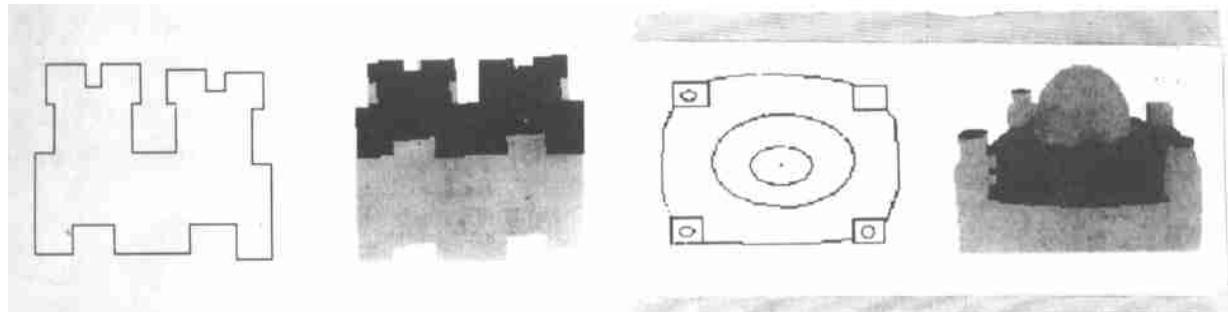
1) 根据 DEM 重建逼真的地形表面形态, 通过叠加正射影像数据生成真实感很强的虚拟景观。

2) 直接使用 CAD、3DS、3DM AX 等设计数据, 逼真表示设计城市的精细结构和材质特征。这种方法不仅能表示城市外观, 而且还能充分展现建筑物的内部形态, 而达到较高水平的细节程度(真三维实体)。

3) 利用摄影测量、激光扫描或其他地面测量手段采集的三维编码数据和实际影像纹理逼真表示城市景观的现状。该方法一般不表示实体内部特征, 根据不同分辨率的影像可以达到的细节水平, 广泛用于大范围城市模型(2.75 维表面, 即实际顶部形状)的快速重建。

4) 根据建筑物的底部边界线(传统的二维线划数据如 GIS 中的 DLG)和相应的高度属性进行三维重建, 表面纹理则可以采用纹理材质数据库中的简单数据直接生成, 该方法主要用于表现较低细节水平的城市景观轮廓特征(2.5 维表面, 即顶部形状为平面)。

基于上述不同细节层次城市模型的混合表示, 便可以满足数码城市多尺度表示的需要。因此, 可以从远处纵观整个城市的概貌, 也可以深入一条街道、甚至一幢建筑物内部明了其周围的细部特征。因为基于 CAD 的三维建模方法在规划设计领域已经很成熟, 而 4) 中基于“火柴盒”式的表示又十分简单, 所以本文主要介绍 3) 中基于摄影测量的三维建模方法。航空影像和近景影像是


建筑物重建的重要数据源, 特别是数字摄影测量技术为三维城市数据的获取提供了经济快捷的方法。为了简化数据采集流程, 减少数据采集工作量, 并保证三维重建的正确性, 在当前自动化三维重建还不成熟的情况下, CCGIS 推荐并采用的数据采集与建模方案是:

①根据主要建筑物的形态特征, 分解成 11 类最基本的体元进行数据采集, 每一个体元由分类码和用户码进行识别。这些体元有特征点、特征线、一般实体、多重实体、具有起算位置的实体、底与顶不一致的实体、球、柱体、凸且内部无起伏的面、一般面、竖直的面。由这些体元便可以构建任意复杂的实体。由航空摄影测量采集的体元几何特征数据(主要是顶部轮廓线), 基于 DEM 便可创建出体元实体。

②三维建模的难点主要在于各种特殊顶部形状的表示和一般凹面的表示。CCGIS 根据最少的特征点和体元特征线采样, 采用顾及特征线的不规则三角形网络模型很好地解决了该问题, 如图 1 所示。

③在人机交互式的编辑环境里再将一个个体元组装成复杂的城市模型, 创建各种实体的属性结构并关联相应的各种属性, 包括纹理特征、材质属性和其他多媒体描述属性等。在编辑阶段, 根据需要也可以添加或删除各种点状、线状、面状和体模型, 并可以修改已有模型的形状, 如将平屋顶改变成人字型屋顶等。

④将③的结果包括几何模型数据和属性数据提交到一体化数据库, 并建立空间索引。

(a) 根据二维顶部(或底部)轮廓线创建的“2.5 维”模型

(b) 根据二维顶部特征点线创建的“2.75 维”模型

图 1 不同细节程度的建筑物几何模型

Fig. 1 Geometric Models with Different Detail Levels

2 三库一体化数据库管理

从 2D GIS 转换到成熟的数码城市描述, 城市数据管理成为热点问题之一。数码城市建设要求建立三维城市模型、逼真的材质或纹理描述、关

联各种属性并提供相应的统计查询与分析等功能。在数码城市中, 三维建筑物形状的重建和绘制、表面性质的描述和材质参数都已成为数据库的一部分。一个成熟的三维数据库包括几何关系数据、照片纹理和其他附加信息数据, 数据量巨大。比如, 深圳市的数码城市模型数据至少有

100G bytes。如此复杂、庞大的数据必须进行有效的组织和管理。CCGIS 在 GeoStar 管理二维数据技术的基础上发展了处理真三维数据的能力, 并在空间索引、透视空间数据的选取与裁减、数据分段处理和动态装载等方面进行了有益的探索。CCGIS 设计了一套完整的基于文件与关系数据库的混合管理系统, 同时也支持对象关系型数据库(如 Oracle8.1)。

与传统的 2D GIS 相比较, 数码城市对数据组织与管理又提出了许多新的要求: ①不同类型数据的一体化管理(至少 DEM、DLG 和 DOM 三库一体); ②多尺度模型的集成应用; ③从数据库到三维虚拟显示的快速转换, 如必须在当前的视野范围内选择物体(金字塔或圆锥内)和动态装载等都要求新的数据模型和有效空间索引机制。

为了使 3D GIS 数据快速可视化, 本文设计并实现了结合 *R*-trees 的概念和层次细节概念于一体的一种数据结构, 并用面向对象的方法来组织。例如, CCGIS 的空间面对象的基本几何数据结构为:

```

{
    地物标识 OID
    地物编码
    面类型(面类型目前有: 凸面, 即简单面
    状地物如墙面之类的四边形和三角形等, OpenGL
    可以直接绘出的简单面; 凹面, 即三角网模型, 特
    征点数除以 3 就是三角形个数; 数学曲面以及组
    合面)
    三维 BOX 范围
    边界坐标点数
    边界坐标点串
    纹理结构(简单映射纹理, 参数映射, 纹
    理影像文件名)
}

```

空间面对象是构成体对象的基本单位。该数据结构有利于采用诸如 OpenGL 和 DirectX 等图形描绘工具直接进行显示。采用基于三维 BOX 范围的分层聚簇式 *R* 树空间索引则有利于数据的快速存取, 并能有效地组织不同尺度(实现不同细节水平 LOD 的控制)的模型, 也为数据的分段处理与快速动态装载创造了条件。为了满足未来建设一个数字城市的需求, CCGIS 在适应 OpenGIS 要求和大型对象关系型数据库如 Oracle 的应用方面也作了有益的尝试。但因为在三维数据结构、空间索引和数据库集成方面还没有公认的解决方案, CCGIS 仍将立足于长期以来自主的知识积累。

3 三维可视化与交互式平台

可视化是人机交互的基础, 为用户设计自己的生活环境提供了窗口和工具。在虚拟现实技术的支持下, 赛博空间代替了传统的抽象地图和用来解释、分析、讨论设计思想及城市进展的描述性文件, 展现在人们面前的是栩栩如生的三维城市模型, 克服了设计专家和用户之间空间文化的差异, 并为人类观察自然、欣赏景观、了解实体提供了身临其境的感受。为此, CCGIS 采用 OpenGL 图形描绘语言设计并实现了三维城市景观模型的动态显示与交互式平台, 为信息查询、空间分析和决策支持提供了一种崭新的理念。使用不同细节程度的数据及其组合, 可以取得不同的视觉效果, 如可以使用高程设色显示 DEM 的晕渲图形, 用以展现自然地貌特征, 可以将影像数据叠加到 DEM 表面显示出逼真的虚拟景观, 导入各种线划数据或栅格地图还可以对细腻的空间分布一目了然, 如果导入具有像片质感的三维城市模型还可以达到虚拟现实的效果。同时, 该平台还提供了丰富的天空、云彩、色灯照明、雾化和注记等特殊效果以及布置各种场景, 如人物、树木和路灯的功能¹。为了满足对海量数据三维实时动画应用的需要, CCGIS 基于有效的数据模型和数据组织策略, 并应用多线程技术实现了数据的动态装载和渐进描绘, 从而解决了对大范围三维城市模型的多尺度无缝漫游。

CCGIS 本身包容和拓展了 GeoStar 独具特色的空间多媒体信息查询、表示、分析和决策等功能, 可以满足一般数码城市建设的需要。同时在该平台上也很容易挂接其他各种 GIS, 特别是传统的 2D GIS, 如房产测绘与产权信息系统等, 从而有利于城市信息的社会化应用。

4 讨 论

针对数码城市发展的需要, CCGIS 提供了一个初步的解决方案, 经过深圳、上海等多项示范工程建设, 证明是可行的。面对日益紧迫的更大范围数字城市的建设, 许多新的、更复杂的问题必须优先解决, 如大型对象关系型数据库的应用、三维城市模型的快速更新与动态管理、大量数据的远程调用、更高效率和更具真实感的三维可视化表现方法等。

参 考 文 献

- 1 李德仁, 朱 庆, 李霞飞. 数码城市: 概念、技术支撑和典型应用. 武汉测绘科技大学学报, 2000, 25(4): 283~288
- 2 Woo S Y. Handling Vertical Data in 3D Geographic Information Systems. International Workshop on Dynamic & Multi-dimensional GIS, Hong Kong, 1997
- 3 Dieter Fritch, Rudi Spiller. 47th Photogrammetric Week. Stuttgart, Germany, 1999
- 4 龚健雅, 朱欣焰, 朱 庆, 等. 面向对象集成化空间数

据库管理系统的应用. 武汉测绘科技大学学报, 2000, 25(4): 289~293

- 5 Zhu Q, Li Deren, Gong J Y, et al. The Integrated Spatial Databases of GeoStar. International Archives of Photogrammetry and Remote Sensing, 2000, 19: 1 243~1 246
- 6 李志林, 朱 庆. 数字高程模型. 武汉: 武汉测绘科技大学出版社, 2000

作者简介: 朱庆, 教授, 现主要从事 DEM 和 3D GIS 的理论、技术方法与应用研究。代表成果:《数字高程模型》。

E-mail: zhuq@regis.wtusm.edu.cn

The Design and Implementation of CyberCity GIS

ZHU Qing¹ LI Deren¹ GONG Jianya¹ XIONG Hanjiang¹

(1 National Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, China 430079)

Abstract: The first section of this paper gives a brief introduction to CyberCity, and then the CCGIS architecture which consists of three parts, the 3D creator and editor, the integrated databases management system and the 3D representation and visualization platform is presented. In the second section, the methods of 3D modeling concerned with LOD are introduced. Especially for efficient 3D data capturing and modeling, based on the object-oriented idea, CCGIS proposed a feature classification and coding scheme, according to which the 3D coded data can be sampled very conveniently using the photogrammetric workstation. On the other hand, a TIN based algorithm can be adopted to create the multiscale 3D city models automatically with high efficiency using these coded data (feature points and lines). The 3D creator and editor can not only create its own 3D city models from the 3D data and/or 2D data plus height attributes, but also import the 3D models created by 3DS or by CAD, and the 3D models also can be edited, for example, to copy, to move, to delete, and to modify any kind of objects in the model.

In the next section, the proper 3D data model concerned with the requirements of OpenGL based rendering are presented at first. Then the integration of different databases like the digital elevation models, digital orthoimages and 3D city models is discussed. For CyberCity, since the huge data volume, its proper organization and spatial database index are quite important for data retrieving. The version of 1.0 CCGIS just provides an initial solution for this purpose, which is based on the hybrid system of relational database and file system. But this is not ideal, because the total data access efficiency is dissatisfactory. Moreover, it is very difficult to maintain the convenience and reliability of multiusers' operation and network transmission. So it is necessary to test the integration management of all the data related to the CyberCity using object relational DBMS like Oracle8.16, etc.

At last, an interactive visualization platform is introduced, this platform provides the choices of 3D animation or virtual cityscape, and the visual impact can be satisfactory through modulating the various display parameters, such as the rotations around the 3 axes, the field of view and the

(下转第 17 页)

reflection and hot point are the examples of the look direction error. The radiometric errors affect the precision of digital analyses' result based on remote sensing images. So it is very necessary to correct the radiometric errors. The paper, beginning from both the sensor's look direction and the micro-plane reflection, analyzed and researched the look direction error to Airborne Imaging Scanner image and the corresponding correction method. The authors consider that in the airborne imaging scanner, the factors, mainly including micro-terrain and the change of relative geographic position in imaging, are the main reasons to create the look direction error. The radiometric error is not only related to the look direction, but also closely related to the spectral bands of sensors. Because of the complexity of the terrain distribution, it is very difficult to correct exactly the radiometric error. The authors also consider that the look direction error has the systematic and random features. According to the statistic theory, a correct method based on image's statistic analysis was put out and used to calibrate the look direction error. The main ideas of the correcting method include: the ratio between average reflecting energy and the reflecting energy received by sensor is fixed for every pixels in the same look direction; there are the same average reflecting energy distribution in the different look direction. The paper sees the earth surface as a model between full reflecting model and full Lambian model. The model is different from both full reflecting model and full Lambian model. In the paper's model, if the reflection intensity of every direction of object is the same the model becomes full Lambian model. If there is only one reflection direction to an input ray, the model is similar to full reflecting model. The determination of correcting coefficients depends on the distribution of reflection energy in the every look directions. At last, the experiment was completed by using simulated image data.

Key words: RS imaging; look direction error; radiometric correction

About the author: YE Zetian associate researcher, Ph. D candidate. His major research fields include photogrammetry and remote sensing, virtual reality and GIS. His main achievements include: a study of optimum exposure in the air photography; frequency spectrum zone images and their applications; analysis of spectral characteristics among different sensors by use of simulated RS images; simulation of remote sensing images based on MIVIS data; color scanner and virtual reality of 3D spatial information and so on.

E mail: yezt@sina.com

(上接第 11 页)

depth, the mode of walking through or flying over, and the animation route, and so on.

The initial version of CCGIS had been used for a few pilot CyberCity projects, such as Shenzhen, Shanghai and Beijing. The modeling methods and data model adopted in CCGIS are good choices for CyberCity construction. In the near future, next version of CCGIS with more powerful functions will be carried out.

Key words: CyberCity; GIS; LOD; integrated databases

About the author: ZHU Qing professor. He is working at DEM and 3D GIS theory, technology and applications publications include "Digital Elevation Model".

E mail: zhuq@rcgis.wtusm.edu.cn