

基于地理事件时变序列的时空数据模型研究与实现

孟令奎¹ 赵春宇¹ 林志勇¹ 黄长青¹

(1 武汉大学遥感信息工程学院, 武汉市珞喻路 129 号, 430079)

摘要: 首先分析比较了已有的时空数据模型的特点, 针对其存在的不足, 提出并讨论了一种基于地理事件时变序列的时空数据模型, 阐述了该模型的时空语义概念和时空拓扑关系, 并针对具体的应用, 在现有成熟的 GIS 平台上进行扩展, 验证了该数据模型的有效性。

关键词: 时空数据模型; 地理事件; 时变序列

中图法分类号: P208; TP311.12

GIS 所描述的现实世界是随时间连续变化的, 但是现有 GIS 本质上都是静态系统, 其数据模型不能很好地表达时间变量和时空拓扑, 也不能提供有效的时空分析功能。随着人们对 GIS 空间分析功能要求的不断提高, 尤其是对多时相空间数据处理要求的增多, 需要一种新的、可以表达时间变量和时空拓扑关系的空间数据模型, 并且适合于时空分析模型的建立^[1~3]。空间分析功能是 GIS 的核心, 但目前大多数 GIS 平台及应用软件无法适应复杂多变的地学环境分析, 所以从空间数据模型的建模方法着手, 将时间维作为一个与空间维同等重要的因素引入到 GIS 空间数据模型中来, 达到空间、属性和时间三维特征的一体化管理的目的, 从而使空间数据模型更好地表达如环境、资源、国土等领域的时变问题, 这样便产生了时空 GIS 或称为时态 GIS (T-GIS)。T-GIS 的关键问题在于如何高效地管理空间、属性和时间三维一体化数据, 即建立一种合适的时空数据模型, 以便更有效地组织管理及表达时态地理数据、空间、属性和时态语义关系。数据组织的好坏直接影响到空间数据库的数据查询、检索的方式、速度和效率^[4]。一个合理的时空数据模型必须考虑以下几方面的因素: 节省存储空间、加快存取速度、表现时空语义。其中时空语义包括地理实体的空间结构、有效时间结构、空间关系、时态关系、地理事件和时空关系等^[5]。完备的时空数据模型应该方便于重建历史状态和对未来的

件进行预测预报, 并有利于时空过程模拟模型的建立。

1 典型时空数据模型

空间数据模型通常由数据组织结构、功能操作和完整性约束 3 部分组成, 是空间数据库的概念基础。时空数据库包含了空间数据库的所有特征, 并将时间维信息引入到空间数据库中, 增加了空间数据库的操作复杂性和管理难度。以下简要说明了几种具代表性的时空数据模型及其优缺点^[2 6~10]: ① 时空立方体模型, 即在欧氏空间中, XY 坐标空间描述对象的空间位置, Z 轴表示一维的时间序列, 该模型特点是简单、易于理解, 但是随着数据量的增大, 对时空立方体的操作将越来越复杂; ② 基于 1NF 的时空数据模型, 即时空对象历史过程用几个元组表达, 时空对象的属性值标记在元组中, 其特点是由利用了关系数据库的优点, 有利于数据库操作, 但针对数据对象简单的变化, 必须增加一个新的元组进行表达, 导致数据库中存在大量重复数据; ③ 基于 N1NF 的时空数据模型, 即使用对象关系数据库模式处理非表格化复杂结构对象的时空数据, 该模型元组采用不定长和嵌套方式, 对复杂时空对象变化只需使用一个元组描述; ④ 面向对象的时空数据模型, 即利用 OOP 技术, 将目标抽象为对象, 对空间对象的属性和操作进行封装, 并将时间维引入到

对象中。该模型时空数据结构简单,充分利用面向对象软件技术,有利于时空数据模型的扩展与时态操作,但目前纯面向对象的GIS比较少,该模型仍有许多理论问题未得到解决。

文献[11]等扩展了基于事件的时空模型,讨论了事件对象与地物特征之间的关系,但没有明确给出基于地理事件与时态关系的时空数据模型的建模方法。本文深入地探讨了地理事件与时态之间的关系,提出了一种基于地理事件时变序列的时空数据模型,以表达地理事件和时态之间的关系。

2 时空数据模型中的地理事件及时间关系

2.1 时空数据变化类型

根据时空对象的空间特征(如位置、边界、形状等),可以总结出三种时空数据变化类型^[12]:

1) 连续变化(continuous change)。在该种变化类型中,可认为时空对象时刻处于变化状态,如水流、空气流动等,以上时空对象可看作是不断运动的物质,其属性、形状等信息处在不断变化当中。

2) 离散变化(discrete change)(或称为瞬间变化)。这种类型的时空对象总是处于静止状态,但当某地理事件发生时,会引起状态的突变(瞬间完成)。此时,时空对象的空间位置和属性都可能发生变化。

3) 级进变化(stepwise change)。该类型的时空对象有时处于静止状态,有时处于变化状态,如人口、交通工具等。该类型的时空对象变化特征是只有时空对象的空间位置发生变化,其属性、形状保持不变。

本文所讨论的时空数据模型是针对国土管理与规划中所涉及的时态问题而提出的,根据国土规划、宗地变更以及土地划拨等业务特点,国土管理等相关应用领域中的时态问题符合上述的第二种变化情况,即时空对象状态的离散变化。

2.2 时空数据模型中时间表达及时间粒度选择

时态GIS中的关键问题是时间表达,即时空对象的历史变化描述。人们在研究时间数据库时提出了事件时间和系统时间两种时间概念。事件时间是指时空对象在现实世界中发生变化的时间;系统时间是用来跟踪数据记录变化的时间,或称为事务时间。在时态GIS中,关心的是空间对

象发生变化的时间,即事件时间。

时间粒度是时态GIS数据库中最短且不可再分的时间片段。时间粒度的选择需根据具体应用而确定,如国土规划应用中,可以将时间细化到以“日”为单位(如某月某日)。时态GIS中,进行时态查询操作时,选择的时间范围不能小于系统所给定的时间粒度。

2.3 地理事件及时空拓扑关系

从上述的时间概念中可以看出,时态GIS中时空对象变化的时间是与引起该变化的事件密切相关的。这里主要讨论引起对象的空间特性和属性变化的地理事件。可以这样定义地理事件:时空对象的产生、状态的变化、对象的进化和消亡都由特定事件触发^[8]。若将引起对象变化的事件视为地理事件,则根据地理事件在时态GIS中所引起的变化的不同,又可将地理事件分为引起属性变化的事件(Ae)和引起空间特征变化的事件(Se)。

针对不同的应用领域,如国土规划、宗地变更等,可以将空间对象按时间段分为不同的状态,而引起状态之间变更的原因就是前面所论述的地理事件。事件可认为是在某一时刻发生的,即事件的描述应包括时间属性。又由于时间轴是一维的,时间是向无穷远处延续的,不存在循环,因此,地理事件在时间轴上的表达可认为是一个随着时间级进的事件序列(又可称为时变序列)。这样可以建立时空对象状态和地理事件之间的时空拓扑关系^[5],如图1所示。

图1给出了两类地理事件(属性事件和空间事件)所引起的对象属性及空间特性变化。图中虚线部分分别表示属性事件(Ae1、Ae2、Ae3)和空间事件(Se1、Se2、Se3、Se4)在时间轴上的投影线,其发生的时刻为T1~T7。从图中不难看出,引起时空对象状态变化的地理事件在时间轴上按时间先后顺序排列,即地理事件的时变序列。时空对象的状态(如土地使用类型)之间的变换是由发生在某时刻的某种地理事件所引起的。时空对象(如某块宗地)状态的时间表达由起始时间和终止时间描述,地理事件发生的时刻由某一时刻描述。文中讨论的时空拓扑关系是指引起对象状态发生变化的地理事件之间的时态关系,如地理事件发生的先后顺序等。地理事件间的时态关系还可区分为引起同一时空对象状态变化的两个地理事件间的时态拓扑关系和引起不同时空对象状态变化的两个事件间的时态拓扑关系^[13~15]。

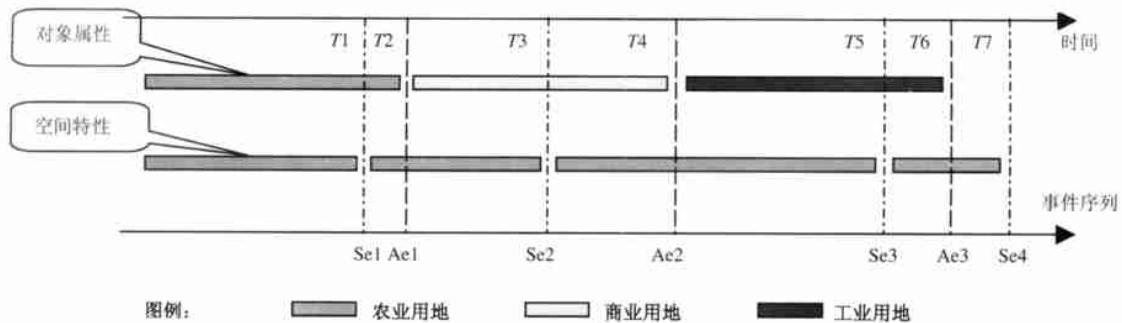


图1 时空对象状态与地理事件的时空拓扑关系

Fig. 1 Spatio-temporal Topological Relationship of Status of Spatio-temporal Object and Geographical Event

从以上分析中可得出,时态GIS中,地理事件包含时间信息;时空对象状态变化是由相应的地理事件所触发的;时空对象状态的时间表达可以由某一时间段描述,其起始状态和终止状态的时刻分别对应于引起状态变化的地理事件发生的时刻。这样可以建立对象状态与地理事件间的拓扑关系,即文中提出的基于地理事件时变序列的时空数据模型。

3 基于地理事件时变序列的时空数据模型的实现

目前国土管理等部门将GIS引入到日常办公当中,实现了多源数据的科学管理,但在土地划拨或宗地变更的管理中又提出了新的要求,如历史数据库的查询和时空分析等。如前所述,笔者

将针对土地划拨和宗地变更等应用领域的时态问题分析一种基于地理事件时变序列的时空数据模型。从土地划拨或宗地变更所使用的数据及处理要求中发现,这两种业务流程是由事件驱动的,如土地登记业务,需要经过选址审批、用地审批、土地登记等多道土地划拨环节,每一道环节都可认为是各个具体的事件。宗地管理和土地划拨中所涉及的时空数据是离散变化的,也就是说某个时空对象的空间特征和属性特征是跳跃式变化的,如土地权属的变更、宗地空间特征(形状、边界)的变化等。这些变化是由相应的地理事件引起的,变化的形式有3种:①属性变化,空间不变;②空间变化,属性不变;③空间属性均发生变化。引起地块空间特征变化的地理事件可抽象为分割、合并及二者混合式变化(复杂划拨事件)^[9,11],如图2所示。

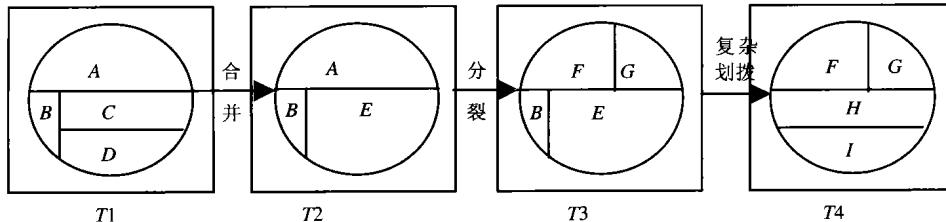


图2 地理事件分类示意图

Fig. 2 Classification of Geographical Events

需要强调的是,图中时刻T3到T4的变化经过“复杂划拨事件”,即对象B、E消亡,对象H、I产生,也可将复杂划拨事件分解为对象B和E合并后再分裂为对象H和I,也就是说复杂的变化事件可由简单的事件组合而成。在我们讨论的时空数据模型中,将地理事件分为分割、合并、新事物诞生、旧事物消亡、属性变化事件、复合变化事件和其他类型事件。地理事件是地理对象生命周期中从一个状态到另外一个状态的过程。每个地理事件过程可看作是各个事件对象的顺序排

列,可由式(1)表达:

$$\text{Event}(i) = f(\text{EID}, \text{ET}_i, \text{EA}_i, \text{ER}_i, \text{EO}_i) \quad (i = 1, 2, \dots, n) \quad (1)$$

式中, EID 表示事件 $\text{Event}(i)$ 的标识号, 可根据某种原则进行顺序编码; ET_i 表示事件的发生时刻; EA_i 表示该事件的属性信息, 描述地理事件的类型, 如分割、合并等; ER_i 和 EO_i 分别是第 i 个事件的描述信息和其他相关信息, 如事件发生的原因等。在基于地理事件时变序列的时空数据模型中, 对时空对象模型的设计可由式(2)表示:

$$\text{Object}(i) = f(\text{ObjID}, \text{ObjA}_i, \text{OSE}_i, \text{OEE}_i, \text{ObjR}_i) \quad (i = 1, 2, \dots, n) \quad (2)$$

式中, ObjID 表示时空对象 $\text{Object}(i)$ 的唯一标识号; ObjA_i 表示该时空对象的属性值, 可能包含多个字段; OSE_i 和 OEE_i 分别表示引起第 i 个对象状态发生变化的起始事件和终止事件的事件标识号 EID 。例如, 某一地块的用地属性在 $T1$ 时刻从农业用地变化为商业用地, 在 $T2$ 时刻该地块的形状发生了变化, 则该地块从 $T1$ 到 $T2$ 时间段内状态的表达可由发生在 $T1$ 时刻和 $T2$ 时刻的属性变化事件和分割(合并)事件表达。 ObjR_i 是对该时空对象的其他方面的描述性说明。

笔者根据银川市宗地历史数据管理要求, 采用上述方法建立了时空数据模型。空间数据使用 MapInfo 进行管理, 模型中的 Object 表是一个 MapInfo 格式文件; 模型中的 Event 表存储引起时空对象由一种状态向另一种状态变化的地理事件, 采用 SQL Server 建库。依公式定义的事件对象和时空数据对象, 在 MapInfo6 基础上进行扩展。可按式(1)和式(2)的表达建立相应的关系表 Event 和表 Object, 如表 1 和表 2 所示。

表 1 Event 关系表

Tab. 1 Relationship Table of Events

事件编号	发生时刻	事件属性	备注
------	------	------	----

表 2 Object 表(TAB 格式)

Tab. 2 Objects Table (TAB format)

ObjID	权属人姓名	宗地四至	宗地面积	起始事件 ID	终止事件 ID	...
-------	-------	------	------	---------	---------	-----

采用该模型, 在 MapInfo 上扩展查询程序, 可实现宗地历史数据的简单查询。

例 1 点选某宗地, 查询该宗地权属人及权属变更时间。

在宗地图上选择某宗地, 由查询模块负责从 Object 表中取得权属人信息, 并通过“起始事件 ID”字段联接查询 Event 表, 获得事件的发生时刻, 并可以得到引起该事件的原因等信息。

例 2 查询某年宗地权属人变更情况。

在查询界面中输入查询条件, 程序从 Event 表中的“发生时刻”字段查找匹配条件, 然后根据“事件编号”字段联接查询 Object 表中“起始事件 ID”字段, 便可得到该年份的相应空间数据及属性数据。

例 3 复合查询: 查找由于属性变更事件引

起的、时间是某年某月的宗地权属人信息。

在 Event 表中查询“发生时刻”和“事件属性”字段, 匹配查询条件中的时间和事件属性, 联接查询 Object 表中的“起始事件 ID”和“终止事件 ID”, 可得到满足条件的信息。

在基于地理事件时变序列的时空数据模型中, 事件对象包含了所有的时间因素, 事件对象中的时间属性用事件发生的时刻描述, 其他属性可以描述事件发生原因等方面的信息。空间数据和属性数据仍然使用 MapInfo 的内部机制进行管理。需要说明的是, MapInfo 的数据结构没有拓扑机制, 而本文多次强调的时空拓扑关系, 正如

§2.3 所论述, 指的是引起时空对象状态发生变化的地理事件之间的时态关系, 不涉及到时空对象之间的基于地理位置的拓扑关系; 而文中提出的时空拓扑关系的实现就是通过 Event 和 Object 两个表格的关联操作, 以完成地理事件与时空对象之间时空拓扑关系的建立。

基于地理事件时变序列的时空数据模型将时空进行分离, 因为时间因素和空间对象的空间特征和属性信息是分开存储管理的, 时间信息包含于事件对象中, 而事件对象与时空对象又处于分离状态。当需要时空分析时, 可以将 Event 和 Object 两个表进行联接等关系表操作。这种方式适合在静态 GIS 上扩展, 若涉及大量的静态空间分析和少量的时态分析, 则效率更高。

在该时空数据模型中, 时空对象与事件对象紧密联系, 时空对象某个状态的起始时刻和终止时刻都可间接地由引起该对象状态变化的事件对象发生时刻来表达。因此, 该模型适合于地理事件与空间对象状态因果关系的推理, 例如空间对象发生变化前后父子对象关系的双向查询, 并可追溯引起该状态改变的原因, 以便纠正操作错误。

4 结语

以上对时态 GIS 中涉及的如地理事件、时间表达、时空拓扑关系等概念进行了论述, 并结合宗地变更等领域的应用, 扩展了一种基于地理事件时变序列的时空数据模型, 讨论了该模型的一些优点。但是该模型也存在不足之处, 如模型适用范围较窄, 试验中处理的数据仍然基于传统的关系统数据库模型, 对处理复杂时空数据能力较弱等。在以后的研究中, 将把重点放在解决基于时变序列的高级时态查询以及更深入地研究空间、属性和时间三维信息的一体化管理问题和相应的软件

研发上。

时态 GIS 是多维动态 GIS 的有机组成部分, 好的时空数据模型又是时态 GIS 取得成功的保证, 也是为建设多维动态 GIS 打下的坚实基础。针对不同的应用领域, 研究的时空数据模型将为 GIS 的发展做理论上的准备。

参 考 文 献

- 1 Gao W, Zhuang Y, Liu L. Management of Spatio-temporal Data of Cadastral Information System in China. *Geospatial Information Science*, 1999, 2(1): 90~95
- 2 龚健雅. GIS 中面向对象时空数据模型. *测绘学报*, 1997, 26(4): 289~298
- 3 乐燕芬, 陈军. 顾及时态地块的土地划拨时空数据组织. *武汉测绘科技大学学报*, 1997, 22(3): 222~228
- 4 唐新明, 吴岚. 时空数据库模型和时间地理信息系统框架. *遥感信息*, 1999, (1): 4~8
- 5 舒红, 陈军, 杜道生, 等. 面向对象的时空数据模型. *武汉测绘科技大学学报*, 1997, 22(3): 229~233
- 6 Chen J, Jiang J. An Event-based Approach to Spatio-temporal Data Modeling in Land Subdivision Systems. *Geoinformatica*, 2000, 4(4): 387~402
- 7 Shi W, Zhang M. Development of a GIS Data Model with Spatial Temporal and Attribute Components Based on Object-oriented Approach. *Geospatial Information Science*, 2000, 3(1): 17~23
- 8 蔡启先. 数据的时态性及其在非时态 DBMS 上的处理. *计算机应用*, 2000, 20(12): 23~27
- 9 黄明志, 张祖勋. 时空数据模型的 NINF 关系基础. *测绘学报*, 1997, 26(1): 1~6
- 10 李春葆, 许云涛. 一种面向对象的时空模型及其操作. *华中理工大学学报*, 1999, 27(5): 23~25
- 11 郑扣根, 余青怡, 潘云鹤. 基于事件对象的时空数据模型的扩展与实现. *计算机工程与应用*, 2001(3): 45~61
- 12 Wang D, Cheng T. A Spatio-temporal Data Model for Activity-based Transport Demand Modeling. *Geographical Information Science*, 2001, 15(6): 561~585
- 13 舒红, 陈军, 杜道生, 樊启斌. 时空拓扑关系定义及时态拓扑关系描述. *遥感学报*, 1997, 26(4): 299~306
- 14 蒋捷, 陈军. 基于事件的土地划拨时空数据库若干思考. *遥感学报*, 2000, 29(1): 64~70
- 15 常征, 陈军, 杜道生. 顾及地块时空特点的地籍数据组织与查询. *武汉测绘科技大学学报*, 1997, 22(3): 216~221

第一作者简介: 孟令奎, 教授, 博士生导师。现主要从事地理信息系统、空间信息网络化及计算机系统结构方面的研究。代表成果: 全实时配电自动化地理信息系统自适应集成技术与实现; 空间信息网络化存取与处理。

Research and Implementation of Spatio-temporal Data Model Based on Time-varying Sequence of Geographical Events

MENG Lingkui¹ ZHAO Chunyu¹ LIN Zhiyong¹ HUANG Changqing¹

(1 School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, China 430079)

Abstract: The geographic environment that has been represented by geographic information systems (GIS) is varying continuously. But popular GIS platforms belong to static systems substantially, and cannot express the dynamic information of spatial entities well. With the increasing demand for spatial analysis functions of GIS, especially for processing capability of multi-timing spatial data, a new spatio-temporal data model for temporal GIS (T-GIS) should be created instantly.

Firstly, several typical spatio-temporal data models are compared in the paper. The pros and cons of typical data models can be learned about from the table in the second section of paper. Pointed to these data models, the paper presents and discusses a spatio-temporal data model based on time-varying sequence of geographical events. Secondly, this paper discusses spatio-temporal semantic relationship and topological relationship of T-GIS. The expression of temporal information of the data model presented in the paper is different from the typical data models mentioned above. The temporal information of spatial entities is recorded with time-varying sequence of geographical events. In other words, the temporal and spatial information of entities is stored separately in the data model.

Finally, according to the character of input and output data sets in cadastral management and land subdivision, the paper extends the functions of popular GIS platform (MapInfo Professional 6.0) in order to demonstrate the efficiency of the new data model. The method is to create two relation tables: one is Event table and the other is Object table (the format of Object table is TAB of MapInfo) in database. All events should be stored in Event table according to time sequence, and spatial entities including spatial and attribute information are recorded in Object table. Through processing the two relation tables, we can display, analyze and query simply spatio-temporal information of entities in land management.

Key words: T-GIS; geographical event; time-varying sequence

About the first author: MENG Lingkui professor, Ph. D supervisor. He majors in GIS etc.

(上接第 201 页)

Method for Basin Palaeotectonic Reconstruction Based on GIS

LIU Xuefeng^{1,2} MENG Lingkui¹ ZHAO Chunyu¹ HUANG Changqing¹

(1) School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, China 430079)

(2) Department of Geoscience, Jianghan Petroleum Institute, 1 Nanhuan Road, Jingzhou, Hubei, China 434023)

Abstract: In this paper, first, we have expounded the mathematical modeling method about basin palaeotectonic reconstruction. Then, we integrate this modeling method with GIS in order to expand the spatial analysis functions of GIS. Finally, a basin palaeotectonic reconstruction model based on GIS has been made, which includes a series of procedures, such as data-input, build-up of palaeotectonic reconstruction database, spatial analysis, generation of digital elevation model (DEM) of palaeotectonic surface, visualization expression of DEM, and geological analysis of palaeotectonic reconstruction map in different geological history period. As a case of application, using the model proposed in this paper, we have successfully reconstructed the palaeotectonic frameworks of the base of Permian in some area of southern China at the end of the Permian, Middle Triassic, Late Triassic and Middle Jurassic, respectively. By comparing the results with the research productions we obtained based on the combination of backstripping analysis method and other graphic display techniques in the same area in 1999, it is clear that reconstructing the basin palaeotectonic pattern based on GIS can not only gain satisfactory results, but also has a lot of advantages in aspects of graphic display, renewal of data and graphics, and assistance geological analysis.

Key words: GIS; basin; palaeotectonic; spatial analysis; visualization

About the first author: LIU Xuefeng, associate professor, Ph. D candidate. His major research interests include GIS and basin analysis.
E-mail: lxf02@163. com