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非心摄动引力的快速计算方法研究
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摘　要:给出了球谐函数不含阶次(n , m)调制的递推公式 ,推导出非心引力矢量 、引力张量的快速计算格式 ,

给出了相应的算法。该算法优于传统正常化递推求和算法 ,减少了运算次数 ,使计算速度提高了 5 倍。对低

轨卫星预报 、卫星重力测量反演 、动力法定轨等的响应时间都具有重要贡献。
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　　在卫星轨道数值解和动力法定轨中 ,右函数

的计算方法是制约计算速度的主要因素 。在右函

数的计算中 ,地球非心引力的计算所占计算时间

是主要的 ,尤其是对低轨道卫星而言 ,需要的阶次

高 ,计算时间就长 ,计算方法就显得极为重要 。另

一方面 ,动力法反演地球重力场时 ,偏导数的计算

也需要频繁地调用球函数及其一阶 、二阶梯度。

为此 ,本文重点研究卫星精密定轨中有关球函数

和引力及其梯度的计算方法 ,以期给出较为高效

的算法。

1　地球非球形引力摄动位

地球非球形引力摄动位δV 可表示为:

δV(r , φ, λG)=
GM e

ae
∑
N

n=2
∑
n

m=0

ae

r

n+1

·

 Pnm(sinφ)  CnmcosmλG + S nmsinmλG (1)

式中 , GM e 是地心引力常数;ae 是地球参考椭球

的长半径;(r , φ, λG)是卫星在地固坐标系中的球

坐标 ,即地心向径 、地心纬度和从格林尼治子午方

向起算的经度;( Cnm ,  S nm)为正常化地球引力位

系数; Pnm(sinφ)为正常化球函数。由于

‖ Pnm(sinφ)cosmλG ‖ = 4π (2)

故引力摄动位δV 的球面平均范数为:

‖δV ‖ =
GM e

ae ∑
n≥2

ae
r
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式中 , K n 为位系数的阶方差 ,它可由位系数模型

计算给出。有时为了分析问题方便 ,当 n >2时

也可由地面重力异常的阶方差模型给出 。如利用

常用的 6参数重力异常阶方差模型可以写出:

K n =
10-12

n -1

α1
n +A

S
n+2
1 +

α2
(n -2)(n +B)

S
n+2
2

(4)

其中 , α1 、α2 、S 1 、S 2 为实常数 , A 、B 为整常数。

取 α1=3.405 , α2=140.03 , S 1=0.998 006 , S 2=

0.914 232 , A =1 , B =2。折合成长度量纲 ,则卫

星高度 n 阶摄动位的贡献为:

ζn =
‖δV n ‖
GM e/ r

2 =ae
ae
r

n-1

K n (5)

ζn 表示 n 阶摄动位对位置的敏感度。图 1给出

了直到 90 阶次摄动位 lgζn 的等值线。图中 , x

轴对应球谐函数的阶次;y 轴对应于卫星的高度 ,

以 km 为单位;-1 相当于 dm 级 , -2相当于 cm

级。也就是说 ,扣除中心引力位和二阶带谐项 ,该

图反映了 3阶以上摄动位对轨道位置的要求 。单

从位能看 ,不同高度的卫星高阶项位能对轨道位

置的要求不是很高 ,这也是改进的 PECE算法只

计算中心引力位和二阶带谐项的原因之一。

　　同理 ,可以求得摄动力在卫星高度处 n 阶的

贡献相对于中心引力的比为:

εn =
‖ δV n ‖
GM e/ r

2 =
ae

r

n

(n +1)(2n +1)K n
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图 1　直到 90阶次摄动位 lgξn 的等值线

Fig.1　Contour of lgξn till Degree and O rder 90

由此可以求得不同高度处 n 阶摄动位的量级 ,为

精密轨道确定选定模型的阶次提供依据 。图 2给

出了直到 90阶次摄动引力在不同高度上的相对

量级 lgεn 。 x 、y 轴含义同图 1。 -6 相当于

O(J 2
2)量级。若计算至 O(J 3

2)≈10
-9量级 ,从图

中可以查得不同高度卫星所需要的最高阶次 。

图 2　直到 90 阶次摄动引力在不同高度上的相对量级 lgεn

Fig.2　Contour of lgεn at Different A ltitudes till

Deg ree and Order 90

2　球函数的改进递推算法

地球引力位及其引力矢量 、引力张量的计算速

度取决于式(1)中球函数的表达形式。众所周知 ,

球函数的表达形式有自然形式 、物理大地测量中常

用的正常化表达形式 、正交归一化复数球函数表示

3种 。在轨道理论中 ,前两种形式同时使用。显

然 ,地球引力位模型通常以正常化形式给出 ,计算

时有些软件将其恢复成自然形式计算 ,有些软件使

用正常化形式计算。正常化球函数的递推公式为:

 P n , m(x)=
(2 n +1)(2n -1)
(n +m)(n -m)x P n-1 , m(x)-

(2 n +1)(n -1+m)(n -1 -m)
(2n -3)(n +m)(n -m)  Pn-2 , m(x)

　　(n ≥2;0 ≤m <n -1)　　　　　　(6)

 P n , n(x)=
2 n +1
2n

1- x
2 Pn-1 , n-1(x)

　　　　　　　　(n ≥2)

递推的初始值为:

 P 0 , 0(x)=1 , P1 ,0(x)= 3 x ,

 P 1 , 1(x)= 3 1- x
2

(7)

从式(6)可以看出 ,球谐函数的递推系数是阶次

(n , m)的函数 ,这就增加了递推的计算工作量。

尽管编程时可以采用其他措施 ,但其乘法运算次

数仍然较高。为此 ,引入新的球函数的定义 ,使其

递推尽可能简化。

由球函数的积分公式 ,可以写出:

∫
2π

0
(cosθ+i sinθcosu)

n
e
imu

du =

2πimn !
(n +m)!

Pn , m(cosθ) (8)

分解后 ,得:

2πimn !
(n +m)!

Pn , m(cosθ)=cosθ∫
2π

0
(cosθ+

i sinθcosu)
n-1

e
imu

d u +
i
2 sinθ∫

2π

0
(cosθ+

i sinθcosu)n-1(ei(m+1)u +ei(m-1)u)du (9)

从而可以求得:

n !
(n +m)!

Pn , m(cosθ)=

cosθ
(n -1)!

(n -1 +m)!
Pn-1 , m(cosθ)-

1
2
sinθ

(n -1)!
(n +m)!

Pn-1 , m+1(cosθ)-

(n -1)!
(n -2 +m)!

Pn-1 , m-1(cosθ) (10)

定义非正常化球谐函数与球谐函数的关系为:

 Pn , m(cosθ)=
2
m
n !

(n +m)!
Pn , m(cosθ)(11)

则由式(11)不难写出其递推关系为:

 Pn , m(cosθ)=cosθPn-1 , m(cosθ)-sinθ·
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 Pn-1 , m+1(cosθ)/4 - Pn-1 , m-1(cosθ)(12)

当下标为-1时 ,有:

 Pn , -1(cosθ)=-
1
4
 Pn , +1(cosθ) (13)

如此 ,利用式(12)和(13)可以快速实现非正常化

球谐函数  Pn , m的递推 。该递推公式的乘系数与

阶次(n , m)无关 ,且绝对值小于 1 ,故是绝对稳定

的。但要注意 , 在球函数的递推计算中 , 恒有

Pnm(x)= P nm(x)= Pnm(x)=0 , m >n 。

相应地 , 非正常化地球引力位系数( Cnm ,

 S nm)与正常化系数( Cnm ,  S nm)的关系为:

　( Cnm ,  S nm)= 2 n+1 N n , m( C nm , S nm) (14)

其中 ,

 Nn , m = (2-δm0)
(n -m)! (n+m)!

2m
n ! 2m

n !
(15)

其递推公式为:

 N n , m = 1-m
2

n
2  N n-1 , m

　　(n ≥2;0 ≤ m < n -1)

 N n , n = 1- 1
2n
 N n-1 , n-1(n ≥2)

 N 0 , 0 = N1 ,0 = N 1 ,1 =1

(16)

利用式(14)～ (16)将地球引力位系数转换后 ,摄

动位δV 又可表示为:

δV(r , φ, λG)=
GM e

ae
∑
N

n=2
∑
n

m=0

ae

r

n+1

·

 Pnm(sinφ)  CnmcosmλG + S nmsinmλG (17)

这样不仅便于摄动位的计算 ,而且更有利于摄动

力的高效计算。

3　引力矢量 、引力梯度张量的球谐
展开式

　　采用非正常化球谐函数表示摄动位后 ,利用

位函数坐标方向上的导数仍然是调和函数的特

性 ,可以证明在地固坐标系下 ,摄动力的级数展开

式为:
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r
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式中 , x 坐标轴方向的系数为:

 C x
n+1 ,1 , S

x
n+1 , 1 =-

2 n +1
2

 Cn , 0 , Sn , 0 ;

　　for(m =1;m <= n;m ++)

 C x
n+1 , m-1 , S

x
n+1 , m-1 =

　
(n -m +1)(n -m +2)

n +1
 Cn , m , - S n , m ;

　　for(m =1;m <= n;m ++)

 C
x
n+1 , m+1 , S

x
n+1 , m+1 -=

　
(n +m +1)(n +m +2)

4(n +1)
 Cn , m , - S n , m

(19)

y 坐标轴方向的系数为:

 C
y
n+1 ,1 ,  S

y
n+1 ,1 =2n +1

2
 S n ,0 , - C n ,0 ;

　　for (m =1;m <=n;m ++)

 Cy
n+1 , m-1 , S

y
n+1 , m-1 =

　
(n -m +1)(n -m +2)

n +1
 S n , 0 , - C n ,0 ;

　　for (m =1;m <=n;m ++)

 Cy
n+1 , m+1 , S

y
n+1 , m+1 +=

　
(n +m +1)(n +m +2)

4(n +1)
 S n , 0 , - C n ,0

(20)

z 坐标轴方向的系数为:

　　for (m =0;m <=n ;m ++)

 Cz
n+1 , m , S

z
n+1 , m =

　-
(n +1 +m)(n +1-m)

n +1
 Cnm ,  S nm

(21)

这 3个公式中 ,假定系数数组元素已经清零 。

按照式(19)～ (21)的逻辑关系 ,可以写出引

力梯度的级数展开的谱系数。如 z x 轴上引力梯

度分量的级数展开式为:

δV zx =
GM e

a
3
e
∑
N+2

n=2+2
∑
n

m=0

ae

r

n+3

 Pnm(sinφ)·

 Cz x
nm cosmλG + S

z x
nmsinmλG (22)

其中 ,系数关系式参照式(21)得:

　　for(m =0;m <=n ;m ++)

 Cz x
n+1 , m , S

z x
n+1 , m =

　-
(n +1 +m)(n +1 -m)

n +1
 C x

n , m ,  S
x
n , m

在实际计算时 ,阶次 n 从零开始 ,没有的系数用

零填充即可 ,这样便于编程。

89特 刊　　　　　　　　　　 　　张传定等:非心摄动引力的快速计算方法研究　　　　　　　　　　　　　　 　



4　实用算法格式

无论是摄动位 ,还是引力矢量单分量等计算

量 ,它们的调和级数式求和可统一表示为:

f(r , φ, λG)=∑
m=0

Am(r , φ)cosmλG +

Bm(r , φ)sinmλG (23)

即先将与(r , φ)有关的 n 变量求和 ,然后再对与

经度有关的 m 变量求和。并且对于三角函数存

在简单的递推算法 , 只需计算一对三角函数值

cosλG 和 sinλG 就可直接按代数运算过程给出

cosmλG 和 sinmλG(m ≥2),递推公式如下:

cosmλG =2cosλG cos(m -1)λG -cos(m -2)λG

sinmλG =2cosλG sin(m -1)λG -sin(m -2)λG

　　对于摄动力的 x 分量 , Am(r , φ)和 Bm(r ,

φ)的表达式为:

Am(r , φ)

Bm(r , φ)
=

GM e

a
2
e
∑
N+1

n=2+1

ae
r

n+2

 P nm(sinφ)
 C

x
nm

 S x
nm

即将位系数装入内存后 ,按式(14)转换得( Cnm ,

 S nm),再按式(19)求得( C
x
n , m ,  S

x
n , m)并保存在内

存空间 ,按式(12)快速递推球函数 , 累加求得

Am(r , φ)和 Bm(r , φ),再由式(17)递推三角函

数 ,从而可快速完成右函数等的计算工作 ,加速后

续数据的处理 。
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