

文章编号: 1671-8860(2003)03-0253-06

文献标识码: A

# 数码城市 GIS 中建筑物室外与室内 三维一体化表示与漫游<sup>\*</sup>

李德仁<sup>1</sup> 刘 强<sup>1</sup> 朱 庆<sup>1</sup>

(1 武汉大学测绘遥感信息工程国家重点实验室 武汉市珞喻路 129 号, 430079)

**摘要:** 介绍了数码城市中室外与室内场景的数据管理及可视化等关键技术, 对室外与室内场景进行了综合比较, 讨论了室内外场景一体化的表示思想。

**关键词:** 数码城市; 三维; 室外; 室内; 一体化表示

中图法分类号: P208

进入 21 世纪以来, 数码城市逐渐成为城市信息建设的热点之一。迄今为止, 国内外数码城市主要应用于包含 DEM 以及河流、道路、植被和建筑物等地物数据的室外三维场景中, 用户可以在虚拟的室外三维场景中漫游, 浏览城市景观, 完成查询、统计、分析等操作。在真实世界中, 建筑物是城市中最为重要的要素, 因此, 只有结合各种建筑物室内场景应用的数码城市才可称得上是一个完整的应用体系, 这样的应用也才更富有生命力。从室外进入室内是数码城市进一步发展的必然。

目前, 布置室内细节物体(家具、电器、厨具、洁具等)的三维建筑场景主要应用于建筑与装饰设计、HVAC (heating ventilation and air conditioning)、计算机辅助设施管理系统(computer-aided facilities management, CAFM)等领域。这些应用通常基于 CAD 环境, 其三维建筑场景一般为一个单体建筑物或者一个小区, 主要强调建筑模型的三维可视化, 无法实现三维环境下图形与属性的交互查询、统计或分析功能, 且难以实现三维建筑场景与 DLG、DEM、DOM 等地理特征、地物数据的结合。

在数码城市中, 室外应用具有 3D GIS 基本特征, 同样, 三维建筑场景也应具有 3D GIS 特征。利用有效的数据组织与管理方法, 不仅可以实现三维建筑场景的动态交互可视化, 实现图形与属性数据的交互编辑、查询、统计或分析等 GIS 基本

功能, 而且能够实现室内场景与 DLG、DEM、DOM 等地理特征、地物数据的结合。

## 1 数据管理

### 1.1 室外数据管理

室外数据由三维矢量模型、纹理影像、DEM 和多媒体属性数据组成, 可通过一体化数据库管理支持有效的数据存取。由于文件和关系型数据库系统的混合管理, 系统难以实现海量数据的管理以及多用户存取的控制, 而面向对象数据库系统目前仍较少用于 GIS, 可以选择对象关系数据库系统(ORDBS)进行数据管理, 在一些小区域的特定应用中采用文件系统管理。为实现三维城市模型的快速可视化, 作者设计了一个基于面向对象方法的、有效组合 LOD 概念的栅格与矢量数据一体化的数据组织策略。

#### 1.1.1 海量栅格 DEM /DOM 数据的组织管理

通过特殊的数据组织和恰当的空间索引机制, 例如金字塔结构, 可有效存储和管理各种数据量的 DEM 数据。金字塔结构是分层组织海量 DEM 数据行之有效的方式, 在 DEM 金字塔结构中, 不同层的数据具有不同的分辨率、数据量和地形描述的细节程度, 分别表示不同细节层次的地形。比如, 最低分辨率层次的数据往往用于大范围比较宏观的描述, 而最高分辨率层次的数据则

\* 收稿日期: 2003-03-25。

项目来源: 测绘遥感信息工程国家重点实验室开放研究基金资助项目(010302)。

用于局部地区详细的描述。同一层数据的索引组织按照“片-块-格网”方式进行，片是整个区域 DEM 数据的逻辑分区，并且是空间索引的基础，每一个片包含若干数量的块，块是基本的数据存储与访问单元。DOM 采取的策略与 DEM 类似。

### 1.1.2 海量三维矢量模型数据的组织管理

一个数码城市通常具有海量三维矢量模型数据，因此必须建立适当的空间索引以加速三维矢量模型数据的定位与访问并提高数据存取效率。可采用  $R^+$  树索引方式组织与管理海量三维矢量模型数据。为建立  $R^+$  树索引，整个地区首先根据一定原则被分解为若干矩形区域，分区信息（区域外接矩形）在数据库中以一个全局表进行管理，这些分区信息将作为区域数据访问的初始依据；同样，每一分区本身也建立有一个管理表，这个管理表用于管理存储当前区域所有模型数据的几何数据表的相关信息。当需要在数据表中插入一条数据时，根据插入数据的几何中心，相应地在全局管理表的分区信息以及区域管理表的数据表信息中进行定位与选择，以最终完成数据插入的操作。

## 1.2 室内数据管理

与室外场景不同，室内场景无 DEM 或 DOM 等大范围栅格数据，只包含以建筑物为单位分布的细节物体模型和建筑模型。为实现室内场景的快速绘制与数据的有效管理，应对每个大型建筑物进行室内空间剖分。大型建筑物通常由裙房、顶层、标准层三部分构成，因此，可以根据三部分的二维平面设计图分别进行二维空间剖分。剖分网格与房间一致，每个网格为封闭的多边形，且与房间范围及大小一致，其中过道也认为是特殊的房间。每个楼层平面剖分为多边形网格集。每个楼层需要预先数字化采集两个图层，即房间结构多边形图层与门窗线状图层。在 ArcInfo、Arcview GIS 或 Auto CAD 等软件中导入建筑平面设计图 dxf 文件作为背景，数字化采集房间结构，以房间或过道为多边形单位，生成一多边形图层；另外，数字化采集门窗，生成一线状图层。在房间结构多边形图层中，建筑物楼层平面被剖分成相互邻接的多边形集，每个多边形代表一个房间或过道。由于多边形按实际房间结构构建，因此，房间多边形可为任意形状，不局限于长方形、凸多边形，也不局限于是否与坐标轴对齐。

基于数字化的房间结构多边形图层与门窗线状图层，可建立门窗-房间关系表和细节物体-房间关系表，并且可建立建筑物→楼层→房间→细节物体的层次结构。

## 2 三维动态交互可视化

### 2.1 室外场景

三维动态交互可视化是数码城市的基本特征。动态可视化代表实时装载必需的数据子集，交互式可视化意味着虚拟模式下的操作，例如漫游或飞行。为满足动态交互可视化，不仅需要一个支持快速数据获取的数据库系统，而且需要支持不同细节层次虚拟模型的实时产生的渐进绘制技术。

可利用细节层次 LOD 技术控制场景复杂度和加速复杂三维场景的实时可视化绘制效率。LOD 模型代表同一个物体具有各种分辨率和质量的模型序列，影像的多分辨率概念与此类似，然而，对于三维矢量数据，LOD 概念的实现更为困难。建立 LOD 模型的方案有两种——实时简化或预创建。预创建方案通常采用视点独立的方法，建立的 LOD 模型保存于数据库中，并且在绘制期间根据视点位置选择特定的 LOD 模型。实时简化方案在实时漫游过程中采用视点依赖的方法实时简化物体模型，例如，靠近视点的物体可保持较高的细节层次，而远离视点的物体可简化到一个较低的细节层次。由于室外场景的复杂性，可将这两种方案混合使用。

此外，可利用基于数据分页的动态装载方法加速虚拟地形景观的实时动态显示。每一帧场景的渲染数据对应计算机内存中的一个数据页，即由若干连续分布的地形块构成一个存储空间。在动态渲染过程中，随着视点的移动，需要不断更新数据页中的数据块，而从硬盘中读入新的数据会耗用一定的时间，带来视觉上的“延迟”现象。为了解决这个关键问题，应建立前后台两个数据页缓冲区，并通过多线程技术实现两个缓冲区之间数据内容的交换。前台缓冲区直接服务于三维显示，后台缓冲区则对应于数据库。采用多线程技术解决数据页缓冲区的数据更新问题，通过判断当前视点位置与数据页几何中心之间的平面位置关系，进行动态数据页的实时更新，从而实现同一尺度下海量数据的任意方向实时漫游。如果在移动过程中视点高度发生变化，还要重新计算视场范围，如果视场范围与数据页的投影面积比值大于某一阈值，则需要更换到相应尺度的数据层进行整个数据页的数据更新。

### 2.2 室内场景

建筑物室内场景可能包括成千上万个细节物

体, 构成这些物体几何模型的三角形数目可达数百万, 导致了漫游效率极低, 难以达到流畅、平滑的交互漫游效果。实际上, 由于不透明墙面的遮断, 在室内某个位置观察到的场景仅仅是整个场景的很小一部分, 因此, 应用可见性算法提高漫游速度成为必然。潜在可见集合 (potentially visible set of polygons, PVS) 计算在提高建筑场景漫游效率方面具有重要的意义。

基于上述室内场景空间剖分方法, 作者研究了一种进行房间-房间以及视点-物体 PVS 计算的新算法。该算法适用于任意结构布局的建筑物场景, 具有通用性。首先, 根据房间多边形与门窗线段的位置关系, 建立房间-门窗关系表及门窗-房间关系表, 即房间与门窗的从属关系, 并且根据建筑物内细节物体与房间多边形的位置关系, 建立房间-物体关系表, 即物体与房间的从属关系。在此基础上, 在实时漫游前预先计算并建立每个建筑物内的每个房间的房间-房间 PVS, 即每个房间的通过其全部门窗潜在可见的所有房间集合, 计算时间长短与漫游速率无关。然后, 在实时漫游过程中, 基于预处理阶段的房间-房间 PVS 计算结果, 进一步计算当前视点的视点-物体 PVS, 即该视点处潜在可见的所有细节物体集合。在实时漫

游过程中, 利用视点-物体 PVS 计算结果, 实时绘制建筑结构(墙面、门窗、地面等), 以及当前视点的视点-物体 PVS 中包括的所有细节物体, 而对于非 PVS 中的细节物体不予绘制。采用此算法后, 室内实时漫游时仅需绘制当前潜在可见的物体集合, 而该集合仅仅是整个建筑物场景中所有物体集合的一个非常小的子集, 因此, 可使实时交互漫游时实际需要绘制的多边形(三角形)数目大大减少, 漫游效率得以有效提高。

一般而言, 采用可见算法后, 实时绘制效率完全能满足交互漫游帧率(15fps 以上)的需要。此外, 也可应用细节物体模型的 LOD 技术加快漫游速率, 只是由于室内场景物体一般距观察者非常近, 如使用较低级别的物体模型, 可能导致视觉效果不理想。

### 3 室外与室内场景比较

按照上述的数据组织与管理方法, 不仅可实现室内外场景的实时交互漫游, 而且可实现图形与属性数据的编辑、查询、统计以及分析等 GIS 基本功能。室外场景与室内场景相关比较如表 1 所示。

表 1 室外场景与室内场景比较表

Tab. 1 Comparison Between the Outdoor and the Indoor

| 比较项目    | 室外场景                          | 室内场景                                         |
|---------|-------------------------------|----------------------------------------------|
| 维数      | 2.5                           | 3                                            |
| 数据量及可视化 | 海量数据, 采用 LOD 等技术提高实时绘制效率      | 海量数据, 采用可见性剔除等技术提高实时绘制效率                     |
| 基础数据    | DEM                           | 建筑结构模型                                       |
| 地物数据    | 道路、河流、植被、建筑物等                 | 家具、电器、厨具、洁具等                                 |
| 查询、统计功能 | 可按照多种方法进行查询、统计                | 主要以房间、楼层为单位进行                                |
| 空间分析功能  | 无线电信号传播、噪音传播分析等众多基于地理特征的空间分析等 | 室内气候条件评估、建筑物电力分布网络分析或建筑物生命周期分析等众多基于建筑结构特征的应用 |
| ...     | ...                           | ...                                          |

1) 维数。由于室外场景 GIS 是基于地形表面(DEM)的相关应用, 严格地说, 应称为 2.5D GIS; 而室内场景 GIS 是基于建筑结构模型的应用, 在垂直方向上有不同楼层及物体分布, 因此可称为真正的3D GIS。

2) 可视化比较。二者都可能存在海量几何数据, 需采用算法提高绘制效率。室外场景采用的是 LOD 及数据分页方法, 室内场景采用的是可见性剔除方法等。也可分别在室外或室内场景中混合使用这两种方法。

3) 基础数据。室外场景的基础数据是地形表面数据, 如 DEM; 室内场景的基础数据是建筑结构模型。它们分别作为其他地物的载体, 通常是稳定不变的。

4) 地物。室外场景的地物包括河流、植被以及市政设施等; 室内场景的地物包括家具、电器以及厨具等细节物体。这些地物可以进行编辑等交互操作。

5) 编辑功能。二者都可建立模型实现场景布置、编辑、更新等功能。例如可在室外场景中添

加一个雕塑,或者在室内场景中将一台电脑从一个房间移到另一个房间。

6) 图形与属性交互查询功能。二者类似,如在室外场景中可通过点击某个地物查询其相关属性;在室内场景中也可点击某个细节物体,如电脑,查询其所有者等属性信息;或者通过属性选择室内外场景中的相应物体模型。

7) 统计。在室外场景中可按多种方式确定统计区域,例如在二维平面图上交互编辑一个多边形区域以统计该区域内楼高超过 50m 的建筑数目,或以某街区为单位进行统计;在室内场景中主要以楼层、房间为单位进行统计。

8) 分析。在室外场景中可进行无线电信号传播、噪音传播以及日照阴影分析等诸多基于地理特征的空间分析;在室内场景中可进行室内气候条件评估、建筑物电力分布网络分析或建筑物生命周期分析等诸多基于建筑结构特征的应用。

通过以上比较可以看出,室外应用与室内应用有诸多共同之处,二者的结合可使数码城市形成一个有机的整体。

## 4 室外与室内场景一体化

室外场景与室内场景相对独立,即在室外环境中主要考虑室外场景的应用,在室内环境中主要考虑室内场景的应用。然而,在数码城市中,只有实现了室外场景与室内场景的整合,才可称作一个完整的数码城市。也就是说,当我们在室外环境漫游、操作,然后从室外自由地进入室内时,感觉应与真实世界一样,室内外场景已形成一个有机整体。

数码城市中,室内场景的建立,将使数码城市在视觉感受上趋于完整,不仅可看到室外景观,也可看到室内布局。而且,在数码城市中实时漫游时,随着视点从远到近,建筑物形成从粗到细变化的 LOD 结构,如图 1 所示。

采用室外场景与室内场景动态交互可视化技术,使室内外场景满足了实时漫游的帧率要求,从而使得在数码城市中实时漫游时,有自由自在的感觉。

采用室内外场景的数据管理技术,使室外场景与室内场景都具备了 GIS 的基本能力,因此,在功能应用方面,二者实现了有机整合。

室内外数据的调度也可实现有机的整合。例如,当在室外漫游时,仅需绘制视域可见范围内的

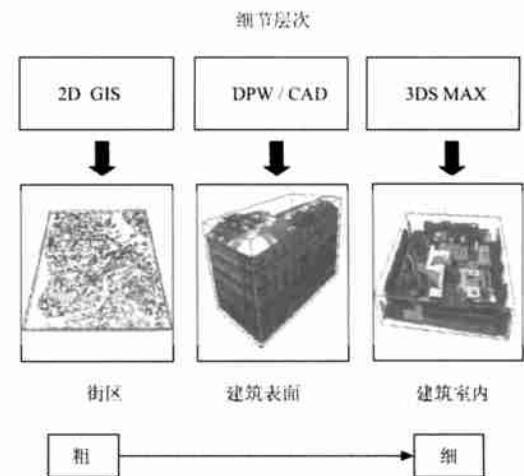



图 1 数码城市中建筑物的 LOD 结构

Fig. 1 LOD of Buildings in a CyberCity

建筑结构模型,而对于建筑物内的细节物体模型不予绘制。当漫游进入室内时,应绘制当前建筑物内的潜在可见物体,并且根据当前视点所能看到的室外场景范围,选择并绘制可见范围内的室外 DEM、河流或市政设施等地物。

CCGIS 室内外一体化表示的系统结构如图 2 所示。图 3 为正在建设中的深圳市三维 CyberCity 中的一个示例(威尼斯大酒店)。

## 5 结语

本文讨论了数码城市中室外与室内场景的数据管理、可视化技术,并对室外与室内场景进行了比较,最后讨论了室内外应用的一体化。相信随着室外与室内三维一体化思想及技术的日益成熟,在以后的室外与室内一体化的数码城市中,正如现实世界一样,室外与室内将混然为一体。我们可想象如下情景:对于某个数码城市中的某个地块,房地产开发商可以在数码城市系统中查询、评估该地块的商业价值,并确定是否购买用于修建楼宇;在买下该地块并完成建筑模型设计后,将建筑设计模型放置于数码城市中相应位置,并在三维数码城市对应环境中室内外漫游以评估设计效果;建筑施工时,可在数码城市系统中计算挖土、添方量,然后在建筑施工过程中,利用三维建筑模型辅助施工与管理;在建筑物完成修建并投入商业运营后,例如作为写字楼,在布置细节物体的三维建筑模型内,可实现楼宇中计算机、办公桌等设施的管理,并进行热气、通风、空调系统等的设计。

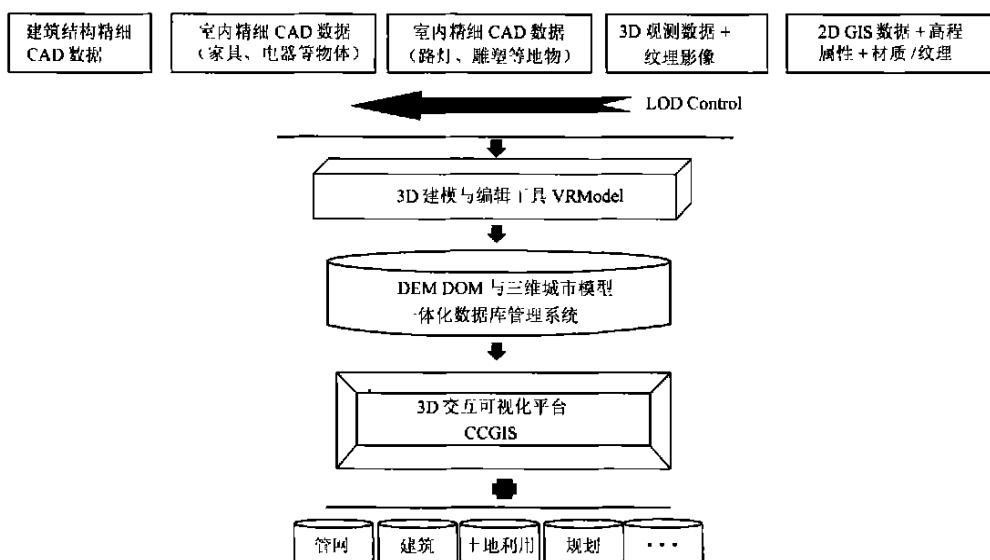



图 2 CCGIS 结构

Fig. 2 Architecture of CCGIS



图 3 深圳 CyberCity 中的威尼斯大酒店

Fig. 3 Part of the Shenzhen CyberCity

## 参 考 文 献

- 1 李德仁. 信息高速公路、空间数据基础设施与数字地球. 测绘学报, 1999, 28(1): 1~5
- 2 李德仁, 李清泉. 地球空间科学与数字地球. 地球科学进展, 1999, 14(6): 535~540
- 3 Li D R, Zhu Q, Li X F. CyberCity: Conception, Technical Supports and Typical Applications. Geo-spatial Information Science, 2000, 3(4): 1~8
- 4 Zhu Q, Li D R, Zhang T, et al. CyberCity GIS (CCGIS): Integration of DEMs Images, and 3D Models. Photogrammetric Engineering & Remote Sensing, 2002, 68(4): 361~368
- 5 Amin G, Wang X H. CC-Modeler: A Topology Generator for 3D City Models. ISPRS Journal, 1998, 53(5): 286~295
- 6 Amin G, Wang X H. Urban Data Management with a Hybrid 3D GIS. UDMS' 99: 21st Urban Data Management Symposium, Venice, 1999
- 7 Shiode N. An Outlook for Urban Planning in CyberSpace: Toward the Construction of CyberCities with the Application of Unique Characteristics of CyberSpace. <http://www.caca.ucl.ac.uk/planning/articles/urban.htm>, 2002
- 8 Cheshire C. Colonizing Virtual Reality: Construction of the Discourse of Virtual Reality. <http://www.caca.ucl.ac.uk/>

planning /articles/urban.htm 2002

第一作者简介: 李德仁, 教授, 博士生导师, 中国科学院院士, 中国工程院院士, 欧亚科学院院士。现主要从事以遥感、全球定位系统和地理信息系统为代表的空间信息科学与技术的科研和教学

工作。代表成果: 高精度摄影测量定位理论与方法; GPS 辅助空中三角测量; SPOT 卫星像片解析处理; 数学形态学及其在测量数据库中的应用; 面向对象的 GIS 理论与技术; 影像理解及像片自动解译以及多媒体通信等。已发表论文 350 余篇。  
E-mail: [dli@wtusm.edu.cn](mailto:dli@wtusm.edu.cn)

## An Integrated Representation of Outdoor and Indoor in CyberCity GIS

LI Deren<sup>1</sup> LIU Qiang<sup>1</sup> ZHU Qing<sup>1</sup>

(1 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, China 430079)

**Abstract:** The idea of an integrated representation of outdoor and indoor in CyberCity GIS is put forward in this paper. Firstly, the difference between the representation of 3D buildings based on CAD and that based on GIS is introduced. The applications of 3D buildings based on GIS can not only implement some basic 3D GIS functions but also be combined with DEM, DOM and DLG data. Secondly, data management methods for outdoor and indoor scenes are discussed respectively. A pyramid structure for DEM /DOM data management and an  $R^+$  tree index for 3D vector data management in outdoor scenes are introduced. A subdivision method for floor plans in indoor scenes is discussed. Thirdly, dynamical visualization methods for outdoor and indoor scenes are discussed respectively. The LOD method and the memory paging technique are applied in outdoor scenes. The visibility method is applied in indoor scenes. Fourthly, the indoor is compared with the outdoor from some aspects such as dimensions, amount of data and visualization, fundamental data, objects, editing function, interactive querying function, and statistics function. Lastly, the idea of an integrated representation of outdoor and indoor in CyberCity GIS is summarized from vision, dynamical interactive walkthrough, data organization and management, GIS functions, and data loading.

**Key words:** CyberCity; three-dimensional; outdoor; indoor; integrated representation

**About the first author:** LI Deren, professor, Ph. D supervisor, member of the Chinese Academy of Sciences, member of the Chinese Academy of Engineering, member of the Euro-Asia International Academy of Sciences. He is concentrated on the research and education in spatial information science and technology represented by remote sensing (RS), global positioning system (GPS) and geographic information system (GIS). He has made unique and original contribution in the areas of theories and methods for high precision photogrammetric positioning, GPS aerotriangulation, analysis and processing of SPOT imagery, mathematical morphology and its application in spatial databases, theories of object-oriented GIS, image understanding and automatic photointerpretation, multi-media communication and mobile mapping systems, etc. The research findings have promoted the progress of the technology directly and are being turned into products. His published papers are more than 350.

E-mail: [dli@wtusm.edu.cn](mailto:dli@wtusm.edu.cn)

(责任编辑: 涓涓)