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摘　要:用非监督全约束最小二乘法对线性光谱混合模型进行了反演 ,通过获得各像元组分的面积比图像来

达到对各像元分类的目的。将非监督全约束最小二乘法的分类结果与有限光谱混合分析法的分类结果进行

对比 ,结果表明 , 无论从分类效果还是计算时间上看 ,前者都优于后者。
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　　线性模型是迄今为止使用最多的一种模型 ,

其突出优点是简单。文献[ 1]研究验证 ,在提取沙

地分量时 ,线性光谱混合模型比传统的穗帽变换

更好 。用线性光谱混合模型来分解混合像元即模

型反演 ,目前大部分都采用最小二乘法 。如果从

最小化代价函数的角度来看 ,因为模型的参数基

本都有明确的物理涵义和边界 ,所以该问题也可

归结到求解约束最优化问题。最优化算法包括确

定性搜索算法和近年来新发展的一些随机性搜索

算法(如遗传算法等)。然而对于线性光谱混合模

型来说 ,与确定性搜索算法相比 ,随机性搜索算法

并没有表现出任何优势 ,而且要花费相对较长的

计算时间[ 2] 。文献[ 3] 提出的非监督全约束最小

二乘法(unsupervised fully const rained least squares ,

UFCLS)是在最小二乘法的基础上 ,采用类似于

确定性搜索算法中的有效集法对计算效率进行的

改进。在没有先验知识的情况下 ,对遥感图像进

行混合像元分解 ,该方法不失为一种有效的方法。

本文分析了用 UFCLS 方法对 TM 图像进行分类

识别的效果。

1　线性光谱混合模型

在遥感图像中 ,找出组成混合像元的各种典

型地物的比例 ,线性光谱混合模型是最简单且应

用最广泛的一种模型。在线性光谱混合模型中 ,

像元光谱波段灰度值被看成为像元内组分相应光

谱波段灰度值与其面积比的线性组合。第 i 波段

的像元灰度值DNi可以表示成:

DNi =∑
p

j=1
m ijαj +ei

　i =1 ,2 , …, L ;j =1 ,2 , …, p (1)

并同时满足:①像元内各组分面积比之和等于 1

的 ASC 条件(abundance sum-to-one const raint),

即 ∑
p

j=1
αj =1;②像元内各组分的面积比为非负

值 的 ANC 条 件 (abundance nonnegativity

const raint),即 αj ≥0。式(1)中 , L 为光谱波段

数;p 为像元内组分数;m ij表示像元内第 j 组分

在第 i 波段的灰度值;αj 为像元内第 j 组分的面

积比;ei 为第 i 波段的误差项 。

设 DN 为 L ×1的像元灰度值列向量 , M 为

L ×p的像元组分灰度值矩阵 , α为 p ×1的像元

内组分面积比列向量 ,则线性光谱混合模型用矩

阵形式可以表示为:

DN =Mα+E (2)

式中 , DN =(DN1 , DN2 , …, DNL)
T;M =(m1 , m2 ,

…, mp), mj为 L ×1的第 j 组分灰度值列向量;α

=(α1 , α2 , … , αp)
T
;E=(E1 , E2 , …, EL)

T
为误差 。



2　UFCLS方法

2.1　FCLS算法

UFCLS算法是在 FCLS 算法基础上发展而

来的 。FCLS 是式(2)在同时满足 ASC和ANC条

件下反演 α的算法。对于等式 ASC约束条件 ,引

入新矩阵 N 和向量S ,分别定义为:

N =[ δΜIT] T , 　I =(1 ,1 , …, 1)
p

T (3)

S =[ δDN 1]
T (4)

式中 , δ用来控制ASC的影响 ,本文中δ取1.0×10-5。

将式(2)中的 M 、DN 分别用 N 、S 代替 ,则

式(2)变为:

S =N α+n (5)

　　求解式(5)得到的解即为满足ASC条件的解。在式

(5)中 ,因为针对一幅遥感影像 DN 是已知的 ,M被假定

为已知 ,所以N 、S 也是已知的 ,求解α就转化为从L+

1个方程中求 p个未知数的问题。用最小二乘估计 α,

其估计值设为 αLS ,则

αLS =(N
T
N)
-1
N
T
S (6)

　　下面讨论加入不等式约束条件 ANC 的情

况。因为是不等式约束 ,所以式(5)没有解析解 ,

只能找到在该约束条件下的最优解 ,由此可转化

为如下约束最优化问题:

minLSE =(N α-S)T(N α-S)s.t.α≥0　(7)

　　解上述约束最优化问题的方法很多 ,其中 FCLS

算法就是其中一种[3 , 4] 。在 FCLS的计算步骤中 ,步

骤11)改为:根据调整后的 R
(k)重新计算 λ(k)=

(Υ(k)α)
-1αR(k),进而计算 αS(k)=αLS-Χ

(k)
λ λ

(k)。

2.2　UFCLS方法

FCLS算法要求像元组分灰度值矩阵 M 是

已知的 。对于 M 未知的情况 ,需要通过非监督

处理获得 M ,UFCLS 方法就是基于此提出的 。

最小二乘误差 LSE是作为衡量真实值与模拟

值拟合好坏的标准 ,在线性光谱混合模型反演中 ,

希望 LSE最小 ,即模拟值最大可能地接近真实值。

UFCLS方法用迭代的办法在遥感影像上直接获取

像元组分灰度值 ,每次迭代中以 LSE来判断某像

元是否是单一组分像元 ,从而决定是否将其像元灰

度值作为一个像元组分灰度值。其原理如下。

首先在一幅影像上选择任意像元灰度值作为

初始像元组分 m 0 ,当然最好的选择是选有最大

d(d = ∑
l

i =1
b
2
i , bi 为第 i 波段灰度值 , l 为波段

数)的像元 。假设整幅影像上的所有像元都是由

m 0组成的单一组分像元 ,当然这种情况通常不

存在 ,为此 ,在影像上选择较 m 0 有最大 LSE 的

像元作为第二个像元组分 m 1 ,这样就形成了像

元组分矩阵 M =[ m 0 , m 1] 。因为在 m 0 和 m 1

之间 , LSE是最大的 ,因此它们间的差异最显著。

有了 M , 就可以用 FCLS 算法估计每个像元中

m 0 、m 1 的面积比 ,分别用α
(2)
0 (DN)和α

(2)
1 (DN)

表示(其上标代表迭代次数 ,在这里包含 DN ,主

要是强调它们是 DN 的函数)。根据线性光谱混

合模型的原理 ,知道了像元面积比α
(2)
0 (DN)和

α
(2)
1 (DN),就可计算出像元灰度模拟值α

(2)
0 (DN)

m 0+α
(2)
1 (DN)m 1 ,并用式(8)算出每个像元模拟

灰度值与真实值之间的最小二乘误差 LSE ,即

LSE(k)(DN)= DN - ∑
k-1

i=0
α(k)i (DN)m i

T
·

DN - ∑
k-1

i=0
α(k)i (DN)m i (8)

　　经过上述计算 ,找到 LSE最大的像元作为第

三个像元组分 m 2 ,用同样的方法对 M =[ m 0 ,
m 1 , m 2]进行处理 ,并不断迭代 ,直到 LSE 小于给

定的阈值为止 。

3　实验结果

实验数据是于 2000年 1 月 2日获得的一幅

深圳及其附近地区的 ETM
+
遥感图像(范围为

UL112°35′57″E 24°4′41″N , UR114°46′16″E
23°53′32″N , LL112°26′13″E 22°19′7″N ,

LR114°34′52″E 22°8′6″N),只选择了其中包括可
见光及近红外的 6个波段 ,即波段 1 ～ 5 、7 ,空间

分辨率为 30m ,像素的灰度值为从 0 ～ 255的相对
值。先对图像进行辐射和几何校正 ,在经过校正
的图像右下角 ,选取尺寸为 51 像素×51像素的

一小块区域(如图 1)进行分析 。为方便起见 ,该
区域几乎没有人工建筑。

图 1　51 像素×51 像素的实验区域图像

F ig.1　51 Pixel×51 Pixel Image of Experimental Area

从线性光谱混合模型式(2)可以看出 ,若已知

M 、DN ,求解 α,实际上为从 L 个线性方程中求p

个未知数的问题 ,这要求 L ≥p ,但这里只选择了

ETM +图像的 6个波段 ,也就是说 ,最多只能算出
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6个未知数 。为了克服这个限制 ,同时由于事先

不知道图像中的像元组分数 ,所以通过求各波段

互相关函数值的平方根
[ 5]
,将原有的 6 个波段扩

展为 18个波段 ,以有足够的波段数来迭代计算出

一系列的 LSEmax ,从而根据 LSEmax的变化情况确

定选取的像元组分数。增加的 12个波段分别为

波段 1和 4 、1和 5 、1和 6 , 2和 3 、2和 4 、2和 5 、2

和 6 、3和 4 、3和 5 、3和 6 、4和 6及 5和 6 。

用 UFCLS方法进行了 10次迭代 ,每次迭代

得到的 LSEmax见表 1。从表 1可以看出 ,随着迭

代次数的增加 , LSEmax不断减少 ,开始减少的速度

非常快 ,越到后面 ,减少的速度越慢 ,其中 m 5 是

个明显的分界线 , m 5 以后的 LSEmax减少得很慢 ,

说明其后分离出的不是像元组分而是噪音 ,从

m 5的 LSE 图像上也显示出这一点(如图 2)。因

此 ,本文只选择了前 6个作为像元组分 。

表 1　UFCLS方法 10 次迭代的 LSEmax

Tab.1　LSEmax of Ten I terations by UFCLS

m 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m9

50 657 3 809 520 165 118 68 63 61 53 43

图 2　m 5的 LSE 图像

Fig.2　LSE Image o f m5

将 6个像元组分作为已知值代入式(2),并用

FCLS算法计算每个像元的 6 类像元组分的面积

比 ,得到用面积比表示的 6类像元组分分类结果

图(如图 3)。面积比越大 ,图中显示的灰度越亮;

面积比越小 ,灰度越暗。

图 3　6 类像元组分分类结果图

Fig.3　Results of the Classification of Six Endmembers

　　根据 UFCLS方法的原理 , 6类像元组分是从

图像上非监督提取的 ,因为没有地面资料 ,所以无

法判断这 6类像元组分具体代表实地何种地物 ,

但从原始假彩色合成图像上可以明确推断 m 2 是

植被。为了验证分类结果 ,将 m 2 的分类图像和

NDV I植被指数图像进行对比(如图 4(a)、4(b)),

发现两者吻合得比较好 ,但前者图像的对比度偏

大 ,淡化了细节和边缘 。这是由于两幅图像显示

值的物理涵义不同而造成的 ,前者代表的是地面

植被的面积比 ,后者代表的是植被指数 ,在没有植

被的情况下 ,也常表现出植被指数值大于 0的情

形。同时还发现 ,图像中部有一阴影区域识别的

效果不理想(如图 4(a)圆圈所示)。

4　UFCLS 方法与有限光谱混合分
析法比较

　　有限光谱混合分析法(constrained spectral

mixture analysis ,CSMA)
[ 6]
是通过梯度迭代求解线

性光谱混合模型(2)的解 ,对于 ASC 、ANC 两个约

束条件的处理 ,采用在目标函数中加入代价函数的

图 4　m2(UFCLS)、m2(CSMA)分类效果与 DNVI比较

Fig.4　Comparison of the Classification Effects of

m 2(UFCLS), m2(CSMA)to NDVI

办法 ,这类似于最优化问题中的惩罚函数法的外点

法。CSMA方法的有约束条件目标函数为:

ε=‖E ‖
2
+A1g1(F)+A2g2(F) (9)

式中 , ‖ E ‖
2
为式(2)中误差矩阵 E 的二阶范

数 ,即最小二乘误差;g1(F)、g2(F)为两约束条

件 ASC 、ANC 的代价函数;A1 、A 2 为常数。当

A 1 、A 2取很大值时 , ε的最小值即为 ‖ E ‖2 在

ASC 、ANC 条件下的最小值。因此 ,其迭代式为:

α(k+1)n =α(k)n -δ(
 ‖E ‖2

 αn
+A1

 g
(F)
1

 αn
+A2

 g
(F)
2

 αn
)

(10)

617　第 7 期 罗红霞等:UFCLS 线性光谱混合分析法在遥感图像分类识别中的效果分析



式中 , α(k)n 表示第 k 次迭代第 n个像元组分的面积比;δ
为迭代步长因子 ,通常取0 ～ 1之间的很小正数。

用CSMA 方法对图 1 的 6 类像元组分进行
了分类 ,其中 m 2 的分类图像如图4(c),将其与
NDV I图像(图 4(b))比较 ,发现两者吻合得不如
m 2(UFCLS),特别是图像下部出现明显的偏差 ,

而且存在与 m 2(UFCLS)类似的问题(如图 4(a)、
4(c)圆圈所示)。

从计算时间来看 , UFCLS 方法也优于 CSMA

方法。在 Dell OptiPlex GX260计算机上 ,对一个 51

像素×51像素的图像进行计算 ,用 CSMA方法需

要9min ,而用 UFCLS方法不到 1min ,且 CSMA方

法要求像元组分灰度值 M 是已知的。式(10)中的

δ、A1 、A2 三个参数值要反复实验才能够确定。在

本实验中 ,3个参数分别取为 8×10-8/(3 n +1)、

6n ×105 、 n ×104 。 CSMA 方法的 EL(EL =

1
N ∑

L

i=1

E i

DN i
为相对误差平均值 , N 为波段总数)

为 18.5%, UFCLS方法则仅为1.6%。

5　结　语

将 UFCLS 方法的分类结果与 CSMA 方法的

分类结果进行对比 ,表明无论从分类效果还是计

算时间上看 ,前者都优于后者 。如果对 CSMA方

法的 δ、A 1 、A 2 三个参数再作进一步的调整 ,可

能对分类效果和计算时间会有所改进 ,但这也正

是此方法的缺点 ,要找到适当的参数值非常困难。

无论是用 UFCLS 方法或 CSMA 方法分类 ,都出

现阴影区域误差偏大的情况 ,这说明应该将阴影

也作为像元组分进行面积比反演分类。
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Abstract:The abundance fractions of endmembers in an image pixel are estimated by

unsupervised fully const rained least squares (UFCLS)based on the inversion of linear spect ral

mixture method.The results of the experiment show that the effects are good.Compared to

CSMA method , UFCLS method is bet ter in both the ef fects of classification and the consumption

of computation time.
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