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摘　要　由于仅用一个分维值难以区分不同的形态 ,首先需要对原分维概念予以扩充 ,即把原来仅局限于无

标度区内的呈直线形分布的常数分维扩充为包括无标度区上下界以外区域在内的 ,呈反 S形分布的变量 (函

数 )分维 ,使分维方法的应用不受观测尺度的限制 ;其次 ,要研究表达扩充分维的数学模型。 文中论述了反 S

形扩充分维的数值实现方法和增强描述复杂现象的能力。
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1　分维扩展的必要性

1. 1　单一分维数描述能力的局限性

基于分数维维数的分形学方法 ,在许多学科

得到了极为广泛的应用。但是 ,正如不少学者所指

出 ,不同的分形体会有相同的分维数 ,即存在“一

值多形”的问题。分形学的创始人 Mandelbrot曾

说过 , Himalays与 JFK的机场跑道可能有相同

的分数维 [36 ]。我国学者敖力布、林鸿溢等 [20 ]也指

出: M andelbro t虽然揭示了分形结构的自相似本

质 ,并且用分维数来表示 ,可是这种描述并没证明

它是唯一的和充分的。 不同分布方式的两种结构

可以具有相同分维数。 ……这说明要确定结构的

特征 ,只有一个分维数是不行的 ,还需要其它参

量。日本学者高安秀树在其名著《分数维》一书中

写道: “分数维的维数是定量地表示自相似的随机

形状和现象的最基本的量。 因为仅利用分数维维

数这样一个数字去描述所有的复杂形状和现象 ,

无论如何也是不可能的。因此 ,就产生了扩大分数

维维数的必要性。 扩大分数维的考虑方法大致有

两种。一种是不把分数维维数仅看作是一个常数 ,

使其能有赖于观测的尺度 ,即使在自相似性不成

立的那种范围内也能使用。另一种考虑方法是 ,在

相似性成立的情况下 ,为了弥补只用分数维不能

描述的信息 ,要重新引进另外的量”。 张济忠 [24 ]、

王桥 [3 ]也都论述了类似的问题。所以 ,仅利用分维

数这样一个数值难以描述各种具有不同复杂程度

的形体和现象。

1. 2　充分利用观测信息的必要性

客观世界不存在纯数学的理想分形 ,存在的

只是统计意义下的随机分形。因此 ,自相似仅出

现在一个确定的范围 ,这个范围叫无标度区。由于

各种原因 ,通常需要测定各种分形体的无标度区

的上下界。在测定过程中 ,所采用的量测尺度显然

要超出无标度区的范围 ,获得了相应的无标度区

之外的信息。显然 ,仅应用无标度区内部的信息是

不够的 ,无标度区之外的观测信息不应该丢掉。要

想合理地应用无标度区之外的观测信息 ,就引起

分维的扩充问题。 分维的扩充旨在对无标度区内

部与外部的大范围信息进行整体描述与分析应

用。因此 ,扩展分数维维数是必要的。

本文仅以数值的方法对分维扩充的第一个问

题 (把分维数看作是观测尺度的函数 )进行研究。

2　扩展分数维关系式的建立

2. 1　分维函数的理论表达

当把分维数 D (r )不再看作是独立于观测尺

度 r的常量 ,而把它看作是依赖于观测尺度 r的

函数 [1, 3, 1 1, 20, 24, 26] ,即

D( r ) = - dlgN (r ) /dlgr ( 1)

对此式求解 ,得:

N (r2 ) = N (r1 ) exp -∫
r
2

r
1

D (r )
r

dr ( 2)

　　此式从理论上表达了两个尺度 r2和 r1的观

测值 N (r2 )和 N (r1 )与分维数 D (r )之间的关系。

这样被扩展了的分数维 ,只要 N (r )是平滑的
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函数 ,在任何时候都是确定的 ,从而在应用时就不

必担心无标度区及其上下界的问题。

2. 2　建立分维函数的数值途径

对于纯数学的分形构造 ,由于它是规则 (理

想 ,确定性的 )分形 ,具有无限精细性和严格的自

相似 ,其观测值与其观测尺度之间可始终保持严

格的线性分形关系。 对于自然界的不规则的 (随

机 )分形 ,不具有严格的自相似 ,只有在一定的尺

度范围内的自相似或具有统计自相似。以地图上

河流、海岸线等线状目标为例 ,其量测尺度显然不

能小于 0. 1 mm ,更不能趋于零。同时 ,其量测结

果 (长度 )不能也不允许为无穷大。因此 ,对于观

测尺度和观测值都有一个逻辑界定问题。

2. 2. 1　最小与最大量测尺度的确定

对于地图信息处理来说 ,最小量测尺度 dmin

可取人们肉眼对图形弯曲的识别能力 ,即可取

dmin= 0. 1 mm。而最大量测尺度 dmax ,即表明量测

终结条件同时是借此量取目标最小长度的尺度。

根据不少学者的意见 ,曲线的最小长度可取曲线

若干突出点的连线或封闭图形的凸壳 ( convex

hull) ,这就意味着 dmax可取突出点或凸壳点之间

的平均距离。

2. 2. 2　线状物体极限长度的逻辑界定

1)线状物体最大长度的确定

在小比例尺地图数字化生产中 ,一般采用

0. 3 mm作为流方式数字化步长。在扫描数字化

时 ,可取 0. 1 mm或更短的步长 ,即可用最小步长

采集的密集坐标所计算的曲线长度作为最大长度

Lmax。在一般情况下 ,就用曲线坐标串 (必要时 ,作

光滑加密 )所形成的折线长度作为线状目标的最

大轴线长度。

2)线状物体最小长度的确定

如前所述 ,线状目标最小长度 Lmin是最大尺

度 dmax量测的结果。对于直线来说 ,dmax就是直线

本身长度。 根据关于曲线最小长度的定义 ,此处

Lmin也就是直线本身。对于一般曲线 ,根据关于曲

线最小长度的定义 ,要用 dmax去度量。若曲线位于

其首末点连线的一侧 ,如图 1所示 ,可求其凸壳作

为其最小长度 Lmin。若曲线位于其首、末点连线的

两侧 ,如图 2所示 ,可先求其凸壳 ,然后将两侧凸

壳点按原曲线点序连成折线 ,以此作为最小长度

Lmin。对于封闭曲线 ,可直接生成其凸壳 ,由此得

到其最小周长 Lmin ,见图 3。

图 1　单侧曲线的凸壳 图 2　双侧曲线的凸壳 图 3　封闭曲线的凸壳

Fig. 1　 Convex Hull o f the　　　 Fig. 2　 Convex Hull o f the　　　 Fig. 3　 Convex Hull o f the

Sing le Sided Curve Double Sided Curve Closed Curve

2. 2. 3　曲线长度的量测

在地图量测学中 ,对曲线长度的量测通常采

用量规法 ,或叫步行构造法、构造步长法、码尺法

等。这是一种简单易行的方法 ,见图 4。其原理是

用量规的足距沿曲线逐步截取以计算曲线长度。

其计算公式为:

L = N d + p d

此处 , L为线状目标长度 ; N 为以步长 d 所量测

的整数部分 ; p为以步长 d 所量测的小数部分。

对于数字化曲线来说 ,其坐标点是有序的 ,不

管是手工截取还是程序化截取 ,都是依序取点。当

量规圆弧与曲线有多于一个交点时 ,则取距量规

起点 S点号最近者 ,见图 4。

用量规法量测曲线长度是分形学诞生时所使

用的方法 ,属“正统”方法。在本研究中所使用的就

是这种方法的自动化模式。

2. 2. 4　量规法程序化的几种实现方法

程序化量规法的数学实质是圆弧与直线段的

求交。 用量规法自动量测曲线长度有多种实现途

径。不管用哪一种实现方法 ,均需先确定最小步长
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图 4　用量规法量测曲线长度

Fig. 4　 Measuring th e Curve Leng th Using

Divide r Method

dmin与最大步长 dmax。此处就若干计算机解法提出

其实现途径。

1)定比分割法与对分法 ( Bisection Method)

对介于 dmin与 dmax之间的任一步长值 d ,步

长出发点与后继点所形成的直线边的长度 S与 d

构成 3种关系:小于、等于和大于。

当出现小于关系时 ,继续取新的后继点作判

断 ,直到等于或大于情况的出现。当出现等于关系

时 ,则当前点就是量规法的所求点。

对于第三种情况 ,又有两种可能: 一种可能

是如图 5所示 ,从出发点 A到第一个后继点 B

的边长 A B 就已经大于 d ,这时可用直线的定比

分割法求定步长末点 M的坐标。

图 5　定比分割 图 6　求直线与圆的交点

Fig. 5　 Dividing a Line Fig . 6　 Finding the Inter-

Segment by Definite section Point o f Circle

Propo rtions and Str aight Line

另一种情况是 ,如图 6所示 ,当半径 d 大于

O A ,但小于 O B ,即在边 A B上必存在一点 M ,使

d= O M。 该问题的实质是 (半径为 d的 ) 圆弧与

直线段 ( AB )的求交。可用多种方法来求解此问

题: 对分法、圆弧与直线段求交法和三角方程法。

用对分法确定点 M的坐标 ,算法简单 ,收敛很快。

后面的数值试验就是用这种方法进行的。

2)圆与直线求交法

对于图 6所出现的情况 ,问题的本质是圆与

直线的求交问题。可用一般几何求交法、参数方程

法或三角方程法。三角方程法为笔者所探求 ,详细

介绍如下:

在图 6中 , S1= O A , S2= O B , S3= A B。 则

S1 = ( x A - x O )
2
+ (y A - yO )

2

S2 = ( x B - x O ) 2 + (y B - y O ) 2

S3 = ( x B - x A )
2
+ (y B - y A )

2

∠T= ( arccos( ( x B - x O ) ( x A - x O ) +

( yB - yO ) (y A - yO ) ) /( S1 S2 ) )

∠ A = ( arccos( ( x O - x A ) (x B - x A ) +

( yO - y A ) ( yB - y A ) ) / ( S1S3 ) )

∠B = ( arccos( ( x O - x B ) (x A - x B ) +

( yO - yB ) ( y A - yB ) ) /( S2S3 ) )

　　令 B M= L ,在图 6的△O M B 中 ,根据正弦

定律 ,有 L /sinT1= d /sinB ,即

L = d sinT1 /sinB。 ( 3)

由△O A M有 ( S3- L ) /sin(T-T1 )= d /sinA,即

L = ( S3 sinA - d sin(T- T1 ) ) /sinA ( 4)

　　由式 ( 3)与式 ( 4)的相等关系 ,有:

d sinT1 /sinB = ( S3 sinA -

d sin(T- T1 ) ) / sinA ( 5)

　　现在的任务是借此方程解出未知数T1。这是

一个三角方程 ,但可以通过三角函数的恒等变换

使它变成代数方程 ,从而使三角方程的求解变成

(一元二次 )代数方程的求解。

当使用万能替代公式时 ,式 ( 5)的三角方程

变为代数方程:

( F2 + F3 )X
2
- 2F1X + F3 - F2 = 0 ( 6)

式中 , F1= d ( sinA- sinB cosT) ; F2= d sinTsinB ;

F3= S3 sinAsinB ; X= tan(T1 /2)。令 T= ( 2F1 ) 2-

4( F2+ F3 ) ( F3- F2 ) ,则式 ( 6)的两个根为:

X 1 = ( 2F1+ T ) /2 /( F2+ F3 )

X 2 = ( 2F1 - T ) /2 /( F2+ F3 )

由此得出T1相应的两个值:

T11 = 2a rctanX 1 ,T12 = 2arctanX2

最后得到步长的终点:

X M = ( X A + D X B ) /( 1+ D )

Y M = (Y A + D Y B ) /( 1+ D )
( 7)

此处 D为定比分点 ,

D = ( S3 - L ) /L ,　L = d sinT1 /sinB

当使用一般替代

sinA = 1 - cos
2

A

cosA = 1 - sin2A

时 ,也得出了类似的结果。

对上述三角方程 ( 5) 也可以用牛顿切线法

解算T1。由于T1是T的一部分 ,故可取T/2作为T1
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的初值。牛顿切线法收敛很快。

在本文的研究期间 ,对三角方程的 3种解法

作了验算 ,并把计算结果与对分法的计算结果进

行了比较 ,见表 1。
表 1　三角方程各种解算方法结果的比较

　　 Tab. 1　 Comparison of Results Obtained by Solving

T rig onometric Equations Using Different Methods

三　角　方　程　法 对 分法

牛顿切线法 万能替代法 一般替代法

T1 10. 566 060 0 10. 566 050 0 10. 566 050 0

L 1. 701 116 0 1. 701 115 0 1. 701 115 0

X m 2. 875 217 0 2. 875 216 0 2. 875 216 0 2. 875 217 0

Y m 7. 541 305 0 7. 541 306 0 7. 541 306 0 7. 541 305 0

2. 3　扩展分维数学模型的数值实现

2. 3. 1　模型的机理分析

如前所述 ,观测值与观测尺度均是有界的 ,就

曲线长度与其量测步长之间的关系来说 ,当在

(dmin- dmax )范围内取所有可能的步长时 ,上述关

系一般呈非线性关系: 当量测尺度接近但尚未等

于 dmin时 ,量测长度的增长在逐步减弱进而趋于

常值 Lmax ; 反之 ,当量测尺度接近但尚未等于

dmax时 ,量测长度已不再作明显减少而趋于常值

Lmin。因此 ,从逻辑机理上看 ,此种关系曲线随着

量测尺趋于 dmin与 dmax时 ,应分别渐近于两个观

测值的极值 Lmax与 Lmin ,即呈反 S形曲线。以往的

应用研究大都没有顾及这个非线性问题 ,其主要

原因是量测尺度的取值范围太有限 ,或把无标度

区之外的观测信息视作无用信息从而予以抛弃。

当尺度取值范围顾及到给定线状目标的尺度上下

限时 ,可以得到相应的反 S形分布。 后者可称为

扩充分维 ,此处的维数已不是常数而是变量。在确

定分维数时 ,非线性现象的出现 ,说明自然界实际

存在的统计分形的出现 ,对它的研究具有更为普

遍的意义。要从新的角度作进一步的研究 ,充分使

用所获得的各种不同信息。

2. 3. 2　反 S形分布的数学模型

用来表达反 S形分布的数学模型有多种 ,如

最为常见的倒置的 Logistic模型 , Log- Logistic

模型
[32 ]
, Gompertz模型

[27, 34 ]
等。这些模型的应用

都有一个前提:其右端都是以无穷大为渐近条件。

而在应用过程中 ,自变量只能取有限值 ,甚至当自

变量取其可能的最大值时 ,它也远不是无穷大 ,因

而这些反 S模型在其右端难以拟合观测数据。由

于它们大都含有以 e为底的指数函数 ,在建立数

学模型时 ,引起解算非线性方程组的复杂问题 ,故

要寻找符合反 S特性的更易于实现的数学模型。

1)分段 Hermite带导数插值模型

对于扩展分维来说 ,根据前面的机理分析 ,反

S形曲线在 dmin与 dmax处分别渐近于 Lmax与 Lmin。

一般 Hermite插值模型满足这一条件 ,但它仅是

顾及两个端点的带导数插值 ,无法顾及中间点列

的具体分布。为此 ,我们采用一种分段 (两段 )带

导数插值 ,即利用中部若干点生成一个中点斜率 ,

构成一个分段 Hermite插值模型 ,见图 7。在本研

究中主要采用此模型。 通过数十种分形图形的扩

展分维计算 ,证明是稳定且实用的。

图 7　分段 Hermite插值模型

Fig . 7　 Piecew ise Hermite Inte rpo la tion Model

2)带导数三次多项式

设有下述三次多项式:

y = a + bx + cx
2+ d x

3 ( 8)

对自变量进行规格化 ,即使 0 < x < 1。

当 x= 0和 x= 1时 ,根据反 S形曲线的渐近

特性 ,函数的一阶导数应等于 0,即

y′= b+ 2cx + 3d x
2
= 0

此时 ,当 x= 0时 ,有 b= 0。

当 x= 1时 ,有 b+ 2c+ 3d= 0。由于 b已等于

0,故 c= 1. 5d。 这时 ,上述三次多项式变为:

y = a + d (x
3
- 1. 5x

2
) ( 9)

上式保证分维曲线的图形在其 X min与 X max处分

别逼近两条水平渐近线。为使分布曲线最大限度

地拟合分布态势 ,用最小二乘法确定参数 a与 d。

在本研究中对此模型也进行了充分的试验 ,

证明此模型与前一模型相当 ,见图 9。同时还具有

另外一些优点 (详见本文§ 2. 3. 5)。

2. 3. 3　分形试验图形的生成

为了使分析讨论的对象更为明确 ,此处采用

若干常见的生成元 ,在不同类型的目标基线上 ,进

行仿射变换与迭代 ,生成若干具有纯数学特征的

分形图形。

采用了 6种生成元与 4类目标基线 ,见图 8。

此处对 4种具有不同结构特征的目标基线分

别用 6种生成元各进行 3次仿射变换与迭代 ,连

同目标基线一起 ,共生成 80个分形图。此处给出
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部分示例 ,见图 9。

2. 3. 4　扩展分维函数的模型拟合

首先对每一个分形图形确定其量规步长序

列 ,即对最小尺度 dmin与最大尺度 dmax的范围进

行等比划分 (表现为对数的等差划分 )。由于对地

图数据来说 ,dmin可认为是常量 ,而 dmax是取决于

( a ) 6种生成元　　　　　　　　　　　　　　　 ( b) 4类目标基线

图 8　所试验的 6种生成元与 4种目标基线

Fig . 8　 6 Kinds o f Gener ato rs and 4 Kinds of Base Lines fo r Fra ctal Tests

图 9　生成的分形图的部分示例

Fig . 9　 Illust ration of a Par t of Fractal Graphics Genera ted

具体物体的图形的 ,因此 ,这样所确定的量规步长

序列取决于 dmax ,因而也就是取决于物体本身。显

然 ,这种步长序列是因物而异的 ,它能在数据观测

开始就顾及到物体本身的特征 ,从而是一种具有

自适应性能的步长确定方法。在本试验中对每一

个图形用 20个 (从最小到最大 )步长去量测该图

形的曲线长度。对同一组数据用上述两种数学模

型分别作曲线拟合。

为了便于可视化与便于比较 ,需要对每一个

图形量测数据作规格化处理 ,以克服由于数值太

小或太大而造成的可视比较困难。此处采用 CAD

中的常用方法: 将各个长度量测结果转换为

0～ 1之间的规格化数值。从而使各个扩展分维图

形均适当地填满屏幕。

试验表明 ,当图形具有明显的分形特征时 ,用

反 S形模型可以很好地表达扩展分维关系。

1) Hermi te分段带导数插值拟合

为了强调扩展分维与常量分维的差异 ,在作

Hermite分段带导数插值拟合的同时 ,也作了回

归直线拟合 ,见图 10、图 11。图中 ,a 为分形曲线 ;

b为构造步长与曲线长度分布 ; c为回归直线拟合

或分段 Hermite带导数反 S形曲线拟合 ; G A M A

与 D E V分别为相应的逼近均方差。

2)三次多项式带导数插值拟合

对上面所提出的用来表达分形反 S形分布的

带导数三次多项式插值模型 ,这里用所生成的部

分分形图形来检验它的适用性 ,见图 12。

2. 3. 5　三次多项式带导数插值拟合与 Hermite

分段带导数插值拟合的比较

对于 Hermite分段带导数插值拟合来说 ,由

于它的分段特性 ,增强了它的拟合灵活性 ,因而它

具有较好的拟合精度。但是 ,分段特性的一个负面

特点是降低了该方法的整体性 ,这表现在函数图

形有时出现非光滑波动 ,见图 11。

三次多项式带导数插值拟合是一个整体函

数 ,因此它具有无波动的光滑单调图形 ,便于进行

解析处理 ,例如 ,用解析法近似地确定无标度区的

上下界等。 但由于其整体性使其拟合的灵活性降

低 ,因而拟合精度较差。
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图 10　扩展分维的回归直线拟合　　　　　　　　　　图 11　扩展分维的分段 Hermite插值拟合

Fig . 10　 Straight Line Reg r ession of Ex tended Fig. 11　 Curve Fitting by Piecew ise Hermite Interpo la tion

Fractal Dimension fo r Ex tended Fractal Dimension

3　扩展分维函数的结构分析

3. 1　无标度区的近似确定

无标度区的确定是分形应用的一个重要问

题 ,学者们正在探讨各种严密有效方法 ,如参考文

献 [3 ]中所述 ,有人工判定法、 相关系数检验法、

强化系数法、拟合误差法、分维值误差法、总体拟

合法、自相似比法、轨迹分析法和文献 [20 ]中提

到的三折线段最小二乘曲线拟合法等等。 这些方

法都是在没有扩展分维函数的情况下提出的。 在

具有扩展分维函数的情况下 ,便可用解析的方法

近似地确定无标度区的上下界。 为此目的 ,在图

13中 ,连接 A、B两点得一直线 ,它与分维函数曲

线交于 C点。 在 A C与 CB两个区间分别求分维

曲线到 A B直线的最远距离点 M与 N ,则此两点
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的横坐标 d1、 d2便为无标度区的下界与上界。

图 12　带导数三次多项式适用性检验

Fig . 12　 Checking the Usability o f Cubic

He rmite Interpolation Method

图 13　无标度区的自动确定

Fig . 13　 Automatic De termina tion o f

Non-Sca ling Range

3. 2　扩展分维函数的区段结构分析

由于扩展分维表达了包括无标度区以外的信

息 ,从而揭示了分形体的更多层次的特征 ,如图

14所示。

织构分形 ( tex tural f ractal) 是 (dmin～ d1 ) 所

对应的部分 ,它描述分形体的精细结构与纹理特

征 ; 结构分形 ( st ructure fractal ) 是无标度区

(d1～ d2 )对应的部分 ,它描述分形体的严格自相

似特征 ;态势分形 ( sta te f ractal)是 (d2～ dmax )所

对应的部分 ,它描述着分形体的总体变化特征。

这种从全程上对分维函数的结构性划分 ,从

本质上对分形的概念进行了扩充: 把原来位于无

标度区以外的观测成果给予了新的理解与定义 ,

使得扩展分维获得了新的活力 ,进而使它具有从

多个层次上描述复杂现象的能力。

图 14　扩展分维对分形体多层特征的揭示

Fig. 14　 Discovering the Multi-lev el Cha racteristics

o f Ex tended Frac ta l Dimension
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Numerical Examination for Fractal Extension

W u H eh ai

( School of Land Science, W TU SM, 129 Luoyu Road, Wuhan, China, 430079)

Abstract　 Because o f the dif ficulty in description of geo-features wi th a sing le v alue of f ractal

dimension, i t is necessa ry to perfo rm ex tension from the original constant dimension value

w hich is independent upon measure step leng ths to va riable one which can be considered as a

function depended upon measure step leng ths. In this paper the author proposed principles

and methods to establish the inverse S shaped curv e function and to examine the sui tabi li ty of

this model fo r enhancing the abi li ty to describe complexed phenomena.

Key words　 f ractal dimension; ex tension o f f ractal dimension; inverse sigmoid curve
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