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黄金水　朱灼文

(武汉测绘科技大学现代地球动力学实验室 ,武汉市珞喻路 129号 , 430079)

摘　要　提出内蕴大地边值问题 ,使得有可能利用重力场边界观测研究地球重力场的内蕴结构。 文中构造了

椭球问题的迭代逼近求解程式 ,并给出了具体解式。
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　　近来 ,重力场内蕴几何结构的研究引起了理

论大地测量学界的普遍关注 [1～ 4 ] ,它以现代微分

几何理论为基础 ,研究重力场等位面流形的微分

几何结构 ,揭示重力场空间的度量与联络 ,深刻刻

画重力场的内在本质特征 [5, 6 ]。

理论上 ,确定重力场的内蕴几何结构关键在

于确定重力场的重力梯度张量 ( Marussi张

量
[2, 5, 6 ]

)。但对实际地球而言 , M arussi张量的获

取却显得异常困难 ,这主要表现在:①尽管目前的

卫星梯度技术已让人们看到一线希望 ,但直接测

量 Marussi张量仍存在困难 ;②尽管理论可行 ,但

根据物理大地测量学所确定的地球外部重力场直

接计算 Marussi张量在实际操作中仍存在许多困

难。因此 ,目前对地球重力场内蕴几何结构的研究

还未从理论走向实际
[4～ 6 ]
。

大地边值理论是物理大地测量学的基础理论

之一 ,其主旨是利用地球重力场元边界观测确定

地球形状与外部重力场 [7, 8 ]。尽管根据其确定的重

力场分布研究内蕴几何结构还存在实际困难 ,但

理论上的可行性是显然的 [2, 5 ]。这表明 ,理论上可

以从重力场元边界观测研究重力场的内蕴几何结

构。本文的主旨是探讨利用地球重力场元边界观

测研究地球重力场内蕴几何结构的理论与方法。

1　问题的提法

所谓内蕴大地边值问题就是大地边值问题的

内蕴形式 ,它利用重力场的内蕴几何结构表述边

值问题 ,进而利用边界场元观测确定重力场及其

内蕴几何结构。初始模型是地球重力场及其边界

场元观测 ,对 Stokes类问题 ,可表述为已知大地

水准面上的重力和重力位 ,要求确定大地水准面

及其外部重力场与内蕴几何结构。

1. 1　内蕴坐标、内蕴几何量及其变换

研究重力场的内蕴几何结构采用内蕴天文坐

标 (H,Λ,W )
[ 5]
,Λ、H为天文经纬度 ,W 为重力

位。一旦求定重力梯度张量在局部天文直角坐标

系中的分量即 Marussi张量分量 W ij ,则 [ 9]

k1 = - g
- 1
W 11 ,　k 2 = - g

- 1
W 22

f= - g
- 1
W 12 ,　V1 = g

- 1
W 13

V2 = g
- 1
W 23 ( 1)

式中 , g= |g radW|,k1、 k 2、f、V1、V2就是重力场内

蕴几何结构 5参量 [5, 10 ] ,重力场空间的度量与联

络都由它们表示 [4, 5, 10 ]。 遵循物理大地测量学传

统 ,定义
[7, 8 ]

:

a( p ) = H( p ) - h( p )

X( p ) = Λ( p ) - λ( p )　　p∈ /R
3

T ( p ) = W (p ) - U ( p ) ( 2)

式中 ,λ、h是大地经纬度 ; U为正常重力位 ;a、Z=

Xcosh为垂线编差 ; T为扰动位。 (h,λ, U )即内蕴

大地坐标 [5 ]。记d、N为正常场等位面的主曲率半

径 , R为力线曲率半径 ,则内蕴大地坐标空间的度

量张量为 [5, 10 ]:

gi j =

d2 0 d2 / (VR )

0 N
2cos2h 0

d2 / (VR ) 0 ( 1 /V2 ) ( 1+ d2 /R2 )

( 3)

V= |g radU|。 此时 ,地球重力场的内蕴几何量可

表示为 [11 ]:

k1 = ( 1 /d) ( 1+ La/Lh) + O (a2 )

k2 = ( 1 /N ) ( 1+ LX/Lλ) + O (X
2
)
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f= (X/d) sinh+ ( sech/N ) (La/Lλ) + O (a
2
)

V1 = 1 /R+ a/d- V(La/LU ) + O (a
2
)

V2 = (X/N ) co sh- Vcosh(LX/LU ) + O (X2 )

( 4)

其中 ,

a= - [1 / (Vd) ] (LT /Lh) + O( T2 )

X= - [1 /(VN ) sec2h] (LT /Lλ) + O ( T 2 ) ( 5)

　　因此 ,若能确定扰动位 T在内蕴大地坐标空

间中的表现形式 ,按 ( 5) 式、 ( 4) 式便可确定重

力场的内蕴几何量。

1. 2　泛定方程

遵循物理大地测量学传统 ,有
[7, 8 ]

:

ΔT ( p ) = 0　 p∈ K ( 6)

Δ表示 Laplace算子 ;K为大地水准面外部开区

域。在内蕴大地坐标空间中
[12 ]

,

Δ = ( 1 / Γ )Li ( Γg
ijLj ) ( 7)

式中 ,Γ= |gi j|; g
i j
是度量张量 gi j的逆变分量 ;

Li= L/Lx
i
, ( i= 1, 2, 3) , ( x

1
,x

2
,x

3
)= (h,λ,U )。将

( 3)式代入 ( 7)式可得:

　Δ = ( 1 /d
2
+ 1 /R

2
) (L

2
/Lh

2
) + [4k

2
/(VR ) +

2 / (RN ) - tanh/N
2
] (L/Lh) + V

2
(L

2
/LU

2
) +

2k
2
(L/LU) - ( 2V/R ) (L

2
/ (LULh) +

[1 / (N
2
cos

2
h) ] (L

2
/Lλ

2
) ( 8)

或表示为:

　Δ =
V
dN

L
LU

(VdN
L
LU

) -
V
dN

L
LU

(
dN
R
L
Lh

) -

V
dN cosh

L
Lh

(dN co sh
R

L
LU

) + V
dN cosh

 

L
Lh
dN
V

co sh(
1
d2

+
1
R

2 )
L
Lh

+
1

N
2 co s2h

L2

Lλ2
( 8a )

式中 ,k为地球自转角速度。

这就是内蕴大地坐标空间中 ,用内蕴几何量

表示的关于扰动位 T的泛定方程。

1. 3　边界条件

按传统定义
[7, 8 ]

:

Δg
 

= g
 

(p ) - V
 

(Q)

Δg = g (p ) - V(Q)
　p∈ E, Q∈ E0 ( 9)

式中 ,Δg
 

、Δg分别为矢量、标量重力异常 ;E表示

大地水准面 ;E0表正常椭球面。 p、Q之间的对应

关系由 Marussi映射
[8 ]确定。

根据 ( 9)式以及曲线坐标系中矢量协变分量

的 Taylo r展开形式 [12, 13 ]可得:

Δg1 = LT /Lh,　Δg2 = LT /Lλ

Δg3 = LT /LU - T (Llnr /LU )
( 10)

以及

Δg = δg - VT (LlnVL/LU ) ( 11)

式中 ,δg= V(LT /LU )表示扰动重力 [11 ]。 ( 11)式就

是物理大地测量学中基本微分方程的内蕴形式。

方程 ( 6)和定解条件式 ( 11)式构成的定解

问题称为内蕴大地边值问题。解此问题并借助于

( 4)式便可确定扰动位在内蕴空间中的表现形式

以及重力场的内蕴几何量。 大地水准面起伏Y依

( 9)式和 ( 2)式便可由通常的 Bruns公式
[7 ]
确定 ,

即

Y= T /V ( 12)

2　内蕴大地边值问题的解

2. 1　椭球问题的迭代逼近序列

由物理大地测量学 [7, 8 ]知 ,假定扰动位可调和

延拓至正常椭球表面 ,则按 ( 6)式、 ( 11) 式 ,内蕴

大地边值问题可表示为定解问题:

ΔT ( p ) = 0　　p∈ K0

BT (E0 ) = Δg
( 13)

K0表示E0外开区域 ,B= V0 (L/LU) - LV/LU是

边界算子。

1)零阶逼近——球近似问题

忽略椭球扁率量级的影响 ,相应算子用 Δ0表

示 ,有:

　Δ0 = V2
L2

LU2 +
1
d2
L2

Lh2
-

tanh
N

2
L
Lh

+
sec2h
N

2
L2

Lλ2
( 14)

或

Δ0 = V
2 L2

LU2 +
1

U
2cosh

L
Lh
 

cosh
L
Lh

+
1

U
2cos2h

L2

Lλ2
( 15)

B0 = V0 (L/LU - 2 /U ) ( 16)

因此构成零阶逼近问题:

Δ0 T (p ) = 0　　p∈ K0

B0 T (E0 ) = Δg ( 17)

　　 2)一阶逼近

设

Δ′= Δ - Δ0 ,　B′= B - B0 ( 18)

则

　Δ′= 2k
2 L
LU

-
2V
R
L2

LULh
+

1
R

2
L

2

Lh
2 + (

4k
2

VR +
2

RN
)
L
Lh ( 18a )

B′= 2V/U - LV/LU ( 18b)

又设在一阶近似下 ,扰动位可表示为:

T
( 1) = T 0+ T1 ( 19)

223第 3期　　　 　　　　　　　　　　　黄金水等: 内蕴大地边值问题　　　　　　　　　　 　　　 　　　



其中 , T0为 T的零阶近似解 ,即 T0满足 ( 17)式 ,

从而 T 1满足:

Δ0 T1 (p ) = - Δ′T0　 p∈ K0

B0 T 1 (E0 ) = - B′T0

( 20)

　　 3)高阶逼近

假设 Tn- 1已经确定 ,则 T的 n阶逼近解为:

T
( n) =  

n

i= 0
Ti ( 21)

其中 , Tn满足

Δ0 Tn ( p ) = - Δ′Tn- 1　p∈ K0

B0 Tn (E0 ) = - B′Tn - 1

( 22)

若 T
(n )的极限存在 ,则

T = lim
n→∞

T
(n ) =  

∞

i= 0
Ti ( 23)

2. 2　具体解式

1)球近似问题的解

顾及 ( 17)式 ,根据解的正则性条件 , T可表

示为:

T (p ) =  
∞

n= 0
 
n

m= - n
CnmPnm ( sinh)eimλUn+ 1 ( 24)

Pnm为连带 Ledgendre函数 ,Cnm为展开系数。设

Tn (h,λ) =  
n

m= - n
CnmPnm ( sinh) eimλUn+ 1

0 ( 25)

由边界条件可得:

Δg /V0 =  
∞

n= 0
(n - 1) ( Tn /U0 ) ( 26)

显然 ,Δg /V0 不含 T1 项 ,由物理大地测量学

知 [7, 8 ] ,假定 T、Δg不含零阶、一阶球谐项 ,则

T ( p ) =  
∞

n= 2
(U /U0 )n+ 1

Tn (h,λ) ( 27)

设

Δg /V0 =  
∞

n= 2
Yn (h,λ) ( 28)

其中
[7 ]
,

　Yn (h,λ) = 2n + 1
4π  

e

Δg
V0

Pn (cosj) de　 ( 28a )

式中 ,Pn为 Ledgendre多项式 ,j为计算点与积分

面元的地心夹角。 依 ( 26)式 ,有

Tn (h,λ) =
U0

n - 1
2n+ 1
4c  

e

Δg
V0

Pn ( co sj) de

(n≥ 2) ( 29)

令

H0 (U ,j) =  
∞

n= 2

2n + 1
n - 1 (

U
U0

)
n+ 1

Pn ( cosj)

( 30)

则

T =
U0

4c 
e

Δg
V0

H0 (U ,j)de ( 31)

经过推导 ,可得 ( 30)式的函数形式:

　 H0 (U ,j) =
2U
κ

+
U
U0

- 5
U

2

U
2
0
cosj- 3

Uκ
U

2
0

- 3
U

2

U
2
0
cosjln

κ+ U0 - Ucosj
2U0

( 30a )

式中 ,κ= (U
2+ U

2
0- 2UU0co sj)

1 /2。

2)非齐次方程的解

在一阶和高阶逼近中涉及到的非齐次方程可

概括为:

Δ0T = - f

B0 T = q
　
在K0内

在E0上
( 32)

　　定理　边值问题 ( 32)式的解可表示为:

　 T ( p ) =
V0

4π 
E
0

H ( p ,Q)q (Q) dEQ+

V0
4c 

K
0

H ( p ,Q ) f (Q) dKQ ( 33)

其中 ,

　 H ( p ,Q ) =
UpUQ

κU2
0
+

UpUQ

κ1U0
-

1 - 2UQ

U0
 

Up

U
2
0
- 3

UpUQ

U
5
0
κ1 -

1+ 4U
2
Q

U
2
0

U
2
p

U
3
0
co sj-

3
U

2
pU

2
Q

U
5
0

cosjln
κ1 + U

2
0 - UpUQ co sj
2U2

0
( 33a )

式中 ,

κ= (U
2
p + U

2
Q - 2UpUQcosj)

1 /2

κ1 = (U2
pU

2
Q+ U

4
0 - 2UPUQU

2
0cosj) 1 /2

( 33b)

下面给出定理的证明。

由于 Δ0和 B0均为线性算子 , ( 32)式可分解

为两个边值问题的和 ,即

Δ0 T = 0

B0T = q
　
在K0中

在E0上
( 32a )

与

Δ0T = - f

B0 T = 0
　
在K0中

在E0上
( 32b)

显然 ( 32a)式与 ( 17)式具有相同解式 ,解 ( 31)式就

是 ( 33)式的第一项。因为当 Q∈ E0时 ,UQ= U0 ,此

时 H核蜕化为 H1 ,

　 H1 ( p ) = H ( p , Q)|Q∈ E
0 =

2Up

κ0U0
+

Up

U
2
0
- 5

U
2
P

U
3
0
cosj- 3

Upκ0
U

3
0

-

3
U

2
p

U
3
0
cosjln

κ0 + U0 - Up co sj
2U0

=
H0

U0

此处κ0= (U
2
p+ U

2
0- 2UpU0cosj)

1 /2
,与 ( 30a)式中

的κ相同。顾及到 q= Δg , dEQ= (U
2
0 /V

2
0 ) de便可

得证。

引理 1　设 T是 ( 32b)的解 ,则

F = U
3 (L/LU) ( T /U2 ) = U (LT /LU ) - 2T

( 34)
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满足边值问题:

Δ0F = - [U (Lf /LU ) - 4f ]　在K0中

F|E
0
= 0

( 35)

进而 F可表示为:

F (p ) = 
K

0

G( p, Q) U
Lf
LU

- 4f dKQ ( 36)

式中 ,

G(p , Q) =
V0UpUQ

4πU2
0

1
κ

-
U0

κ1
( 37)

　　证　将 Δ0作用于 ( 34)式两端并顾及 ( 32b)式

便可得 ( 35)式。又因为 G( p ,Q )满足

Δ0G= - δ( p, Q)　在K0中

G|E
0
= 0

从而得 ( 36)式。

引理 2　问题 ( 32b)的解可表示为:

T ( p ) =
V0
4π 

K
0

H ( p ,Q ) f (Q )dKq ( 38)

此处 H ( p ,Q)由 ( 33a )式给出。

证　注意到

 
K

0

GU
Lf
LU

dKQ = 
e

de∫
0

U
0

G
U

3

V3
Lf
LU

dU

将上式右端的单积分分部积分 ,并顾及 T、 f不含

零阶、一阶球谐函数项 ,便得:

 
K

0

GU
Lf
LU

dKQ = - 
K
Q

(Uf
LG
LU

- 3Gf ) dKQ

从而

F ( p ) = - 
KQ

(G+ U
LG
LU ) f dKQ ( 39)

设

S (p , Q) = - G( p ,Q ) - UQ (LG /LUQ )

由 ( 34)式可得:

T
U

2
p
=∫

U
p

0

1
U

3
p 
K0

S( p ,Q ) f (Q ) dKQ dU

= 
K
0

S1 (p , Q) f (Q) dKQ ( 40)

其中 ,

　 S1 ( p ,Q ) =∫
U
p

0

1
U

3
p
S( p ,Q )dU =

V0
4π

[
UQ

κU
2
0Up

+
UQ

κ1U0UP
- 1 -

2UQ

U0
 

1
U

2
0Up

- 3
UQ

U
5
0Up
κ1 - 1+

4U2
Q

U
2
0

1
U

3
0
cosj-

3
U

2
Q

U
5
0
cosjln

κ1 + U
2
0 - UpU0co sj
2U

2
0

] =

(V0 /4πU2
p ) H ( p ,Q ) ( 41)

将 ( 41)式代入 ( 40)式得 ( 38)式 ,即 ( 33)式第二项。

至此 ,完成了定理的证明。

3　结　语

　　内蕴几何 5参量是重力场内蕴几何结构的基

本特性参数。本文主要研究由地球重力场元边界

观测确定 5参量的方法 ,也就是解内蕴大地边值

问题。

内蕴大地边值问题的泛定方程是内蕴坐标空

间中的 Laplace方程 ,定解条件即物理大地测量

学基本微分方程的内蕴形式。本文仅就物理大地

测量学中的 Stokes类问题建立基本模型 ,对其它

类问题同样可以建模。 文中给出了内蕴大地边值

问题的迭代逼近问题序列以及相应定解问题的积

分解。

尽管内蕴边值问题的解式仍首先以扰动位的

形式给出 ,但它与物理大地测量学中的 Stokes解

不一样 ,内蕴几何量可以通过对前者解式中内蕴

坐标的直接微分而获得 ,而后者则不然。 显然 ,前

者和后者一样 ,也可以确定大地水准面起伏以及

外部重力场。

由于内蕴大地边值问题将物理大地测量学与

内蕴大地测量学的研究融为一体 ,因此 ,它可将地

球重力场的研究引向深入。 这至少表现在下述两

个方面:其一是利用重力场场元边界观测作控制 ,

推估空中某已知重力值点附近的重力值 ,因为重

力值之间联络可通过内蕴几何 5参量表示 ;其二

是为探讨重力场与场源物理之间的响应提供新的

途径 ,这就是研究重力场内蕴几何结构与场源物

理结构之间的响应。
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Intrinsic Geodetic Boundary Value Problem

Huang J inshui　Zhu Zhuowen
( Labo ratory for Modern Geod ynamics, WT USM, 129 Lu oyu Road, Wuh an, China, 430079)

Abstract　 Int rinsic geodetic boundary value problem ( GBV P) is propo sed and discussed in

the paper. So i t i s po ssible to study the earth’ s int rinsic g eometrical st ructure w ith th e help

o f gravimetrical bounda ry measurements. Int rinsic GBV P is the int rinsic form of GBV P; i ts

iterativ e approximative series is giv en and the integ ral solutions of the consulted BV P in the

int rinsic coo rdina tes are const ructed.

Key words　 Marussi tensor; Stokes-type boundary va lue problem; int rinsic structure of

g rav ity field; intrinsic geodetic bounda ry value problem; i terativ e approximation so lution

我校将召开空间信息科学和技术国际研讨会

( SIST’ 98)
　　由武汉测绘科技大学 ( WTU SM )、武汉测绘科技大学测绘遥感信息工

程国家重点实验室 ( LIESM ARS)主办的空间信息科学和技术国际研讨会

( SIST’ 98)将于 1998年 12月 13日～ 16日在我校召开。本次国际学术会

议的主要议题有: 从航空与遥感影像中提取专题信息 ;影像匹配与三维目标

重建 ;数字影像与 GIS集成的空间数据库管理 ;实时高精度空间定位技术 ;

影像分析与信息融合 ;微波与干涉 SAR技术 ;空间数据可视化与 VR技术

多媒体技术与网络技术 ;多维空间数据模型 ;多尺度空间数据库与地图综

合 ; 3S集成的理论与关键技术 ; 3S集成范围下的动态数据更新技术 ; 3S技

术在资源与环境领域的应用 ; 3S技术与减灾防灾 ; 3S技术在社会可持续发

展中的应用。

据悉 ,会议期间 ,还将隆重举行我国航测和摄影测量先驱、中国科学院

资深院士王之卓教授执教 60周年暨 90寿辰庆典。 有关会议通知已经发

出。
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