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Tab. 1 Known Results for Test Baseline
(3] . L
, 1, Li(mm) Ly (mm) p1/Ci(m) pP1— pa(m)
1. 968 2. 641 0. 423 0. 652
(1 -
pe( ) 4 b. b P
- s Ds 1.264 45— 6 — 1.183 1= 6 - 5 551 8f-
y= b= kZ::oka(t) (3) Dy 3.598 9p- 6 1 053 41—
SNV D. 1. 001 3~
»Pm ( )_ ;OUt ’ 3
J 1 fpu()ydt= 0 (s= 0, 1, ,m— 1) (m) 9. 2665 21. 006 8 ~23.027 6
0
(mm) 1.12 1. 90 1. 00
4 (m): L= 32.518 0
2 10

(k= 0, 1,-, m)

(5) :
T Ty= 3w,
X {Zn:o’ypj(xz')— yi}= min
Wi yi—h(t)
N aT- Gz 0 (6)
Cr= X Wip (x) pr (x1) (7)
Ci= 3 Wiype(xi) (8)
n+ 1 4= 0, 1, -, n),
h=1,  Wi= 1, xm= (4= %)/,
Pm.n (X[) = go(_ 1)k{ﬁ {’Z-F }j x_ln((/@ (9)
L= G ICu (10)
b (xi) = 2 Topma (x1) (11

RINEX

Tab. 2 Baseline Results Computed from Fitted
Observation with Sample Rate of 10 s

L

Li(mm) Ly (mm) p1/Ci(m) pi1— p2(m)
2.057 2.703 0. 597 0. 712
2
D, D, D.
Dy 5.888 OE- 7 - 2.644 5E- 7 - 1. 381 3E-
Dy 6.270 1E- 7 2. 578 OE-
D- 3. 234 2 -
3.
(m) 9. 2654 20. 999 2 - 23.0313
(mm)  0.77 0.79 0.57
4. (m): L= 32.515 4
3 15s

Tab. 3 Baseline Results Computed from Fitted
Observation with Sample Rate of 15 s

1

Li(mm) Ly (mm) p1/Ci(m) pi— p2(m)
2.088 2.569 0. 575 0. 734
2
D, D, D,
D, 6.562 2E- 7 - 3.263 1E- 7 - L 8180k~
D, 8.319 3E- 7 3. 571 3E-
D. 4. 535 TE-
3
(m) 9. 266 0 20. 998 7 - 23.031 6
(mm) 0. 81 0. 91 0. 67
4 (m): 1= 32.515 4
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4 20 s 2~ 5 1
Tab. 4 Baseline Results Com puted from Fitted

Observation with Sample Rate of 20 s

L

Li(mm) L>(mm) p1/Ci(m) pi— p2(m)

: GPS
2. 006 2.520 0. 585 0. 707
2 2 2
D, D, D. GPS ;
D, 7.545 1E- 7 - 3.661 5E- 7 - 2 268 7TE- 7 s o
D, 1. 062 7E- 6 4. 756 2E- 7
D. 5. 963 8E- 7
3
1
(m) 9.26517 20. 998 5 - 23.0317
(mm)  0.87 1. 03 0.7
4. (m): L= 32.515 4 . ,1996. 137~ 143
2 . . : ,
5 30 s
1986.
Tab. 5 Baseline Results Com puted from Fitted 3
Observation with Sample Rate of 30 s 1992, 267 290
L 4 : L , 1985.
Li(mm) L2(mm) p1/Ci1(m) pi1— p2(m) 54~ 67
2.135 2.565 0. 602 0. 728
5 . GPS
2
,1996 (1)
D, D, D.
D, 1.097 3E- 6 - 7.080 6E- 7 - 3. 4089E- 7 6 : GPS
D, 1. 702 4E- 6 8 5584F- 7 , 1996 (4)
D. 9.2399E 7 7 . GPS O
3 ]. : , 1997
(m) 9. 2654 21. 000 1 - 23.0315
(mm) 1.05 1. 30 0. %
4 (m): L= 32.516 1

Research on the Real Time Formation of Optional Equivalent
GPS Observations in GPS Fiducial Stations

Xia Linyuan Liu Jingnan Hu Zhendong
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Abstract To make full use of GPS fiducial stations and to adapt them to multipurpose appli-
caitons such as geodesy, WADGPS, geodynamics and etc. , with the aim of resolving the ba—
sic problem regarding the adaptability of GPS fiducial stations, this paper employs an or-
thogonal fitting approach to forming equivalent observations in real time with optional sam-
ple rates. Practical tests show that the algorithm is steady and ideal.
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