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摘　要：在地理学与地图学的基础上，从灾害系统的角度，探讨了图层约束（ＬＣ）和道格拉斯普克（ＤＰ）相结合

的线状地图自动综合问题。以铁路线为例，构建了基于地震长期烈度区划、滑坡危险性、泥石流灾害活动程

度、多年平均最大积雪深度、水灾频次、沙尘暴年最大日数和湖泊分布等图层信息的约束源数据库，结合铁路

密度与综合致灾强度风险矩阵，实现了分区、分段铁路承灾体的自动综合，揭示了多尺度下铁路密度分布的区

域规律。
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　　我国地域辽阔，灾害类型多、区域差异大，因

此，绘制不同区域尺度高质量的自然灾害风险图

对灾害易发区的损失评估、防灾减灾决策支持等

具有重要作用。制图综合是地图在变换比例尺的

过程中，为了保持地图内容详细性与表达清晰性

的对立统一、几何精确性与地理适应性的对立统

一，把空间信息中主要的、本质的数据提取后联系

在一起形成的新的概念［１］。目前，针对线状要素

的综合算法主要有ｎｔｈ点算法、道格拉斯普克算

法、垂距离算法、角度算法等，近年来，人工智能、

地图曲线步行法、分形理论分析法［２］等方法也有

较多应用。很多学者对这些线的简化算法进行比

较，并提出了新的改进方法，或说明某一算法的适

用范围［３］。但是，综合考虑孕灾环境和特定承灾

体而进行的线状地图制图综合研究还较少［４５］。

本文从灾害系统的角度出发，根据图层约束理论

探讨了我国铁路承灾体灾害风险制图中的自动综

合问题。

１　理论与方法

以往的灾害风险地图研究，主要集中在致灾

因子危险性方面，或者是直接对风险结果作地图

图形方面的自动综合。因此，当前灾害风险地图

的自动综合，既缺乏较完备的理论支撑，又缺少反

映灾害发生过程的自动综合方法。本文从“地理

学地图学灾害学”三维角度构建了自然灾害风

险制图自动综合的图层约束（ＬＣ）理论，提出在自

动综合过程中从灾害系统的角度出发，找出自然

灾害发生、发展过程中的关键图层作为尺度约束。

约束图层的选择，一方面要切实反映铁路沿线灾

害的形成机理；另一方面要依据图层属性在灾害

系统中的作用，厘定各图层在灾害发生中的约束

阈值，通过调节不同阶段、不同层次的图层约束域

来实现自动综合。在地学理论的基础上，构建充

分体现灾害系统的语义约束、孕灾环境的结构约

束、致灾因子的阈值约束、承灾体的空间约束、灾

情表征的视觉约束的理论构架。

道格拉斯算法被公认为线状要素化简的经典

算法［６］，同时，与ＬＣ相结合的模型使其从单一的

图形综合算法转变为有地学基础理论支撑的系统

化的自动综合模型与算法。线状灾害风险地图自

动综合是以地学理论为基础，通过控制，依托ＤＰ

算法实现的一种自动综合方法体系。
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２　以铁路承灾体为应用实例

铁路承灾体自动综合的基本原则是“因线制

宜”，即在分析其与周边孕灾环境、致灾因子关系

特征的基础上对铁路线进行分类与分段综合，以

便选用不同的方法和参数。ＬＣＤＰ自动综合模

型主要由３个步骤构成。

２．１　构建综合致灾强度指数

本文主要选取了地震长期烈度区划（犎１）、滑

坡危险性（犎２）、泥石流灾害活动程度（犎３）、多年

平均最大积雪深度（犎４）、水灾频次（犎５）、沙尘暴

年最大日数（犎６）作为我国铁路沿线的主要灾害

类型。其中，由于地震灾害对铁路的影响相对较

大，本文将犎１作为强致灾因子（犈），并且重点研

究铁路沿线的高风险区，所以选择了６个约束图

层的最高两级（５、６级）参与铁路综合致灾强度指

数的构建，着重阐述重点区域铁路灾害风险的大

小（见表１）。

表１　约束图层的阈值区间

Ｔａｂ．１　ＲａｎｇｅｏｆＴｈｒｅｓｈｏｌｄｏｆＣｏｎｓｔｒａｉｎｔＬａｙｅｒｓ

灾害
级别

１ ２ ３ ４ ５ ６

犎１ ≤Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ ≥Ⅹ

犎２ 低 较低 中等 较高 高

犎３ 无活动 弱活动 中等活动 强烈活动 极强活动

犎４ ≤２０ ２０～３０ ３０～５０ ５０～１００ １００～２００ ≥３００

犎５ ≤０．０１ ０．０１～０．０３ ０．０３～０．０７ ０．０７～０．１５ ０．１５～０．２５ ０．２５

犎６ ≤１ １～５ ５～１５ １５～３０ ３０～４０ ４０～５０

　　在构建综合致灾指数时，假定 犎１的高风险

级别用“犈”来表示，其他致灾因子（犎２～犎６）对应

的风险级别用“＋”来表示，并且假设 犎２～犎６同

等重要。通过ＧＩＳ空间数据分析，可以计算出每

个区域斑块内的致灾因子组合类型，并且可以用

相应组合代码来表示。例如，灾害组合类型为

犎１犎２犎５，则其组合代码为“犈＋＋”；组合类型为

犎６犎２犎５，则其代码为“＋＋＋”。由此得到全国

每个网格内的灾害组合类型（见图１），以此来代

表铁路沿线的综合致灾指数，并将有无地震灾害

（犈）作为两个尺度来评价。

图１　中国铁路承灾体综合致灾指数分布

Ｆｉｇ．１　ＩｎｔｅｇｒａｔｅｄＨａｚａｒｄＩｎｄｅｘＤｉｓｔｒｉｂｕｔｉｏｎｏｆ

ＣｈｉｎａＲａｉｌｗａｙ

２．２　建立分区、分段综合模式

“分区”主要是指高低风险区的划分，可以通

过综合致灾指数来反映。随着比例尺的缩小，图

形简化，地图信息负载相对减少。在这种情况下，

需要优先关注高风险区。依据我国铁路综合致灾

指数的空间分布，将全国分为两个尺度：低风险区

（＋，＋＋，＋＋＋）和高风险区（犈，犈＋，犈＋＋，犈

＋＋＋）。“分段”原则，即有风险区的铁路不宜被

综合，应保留细节表达；无风险区的铁路可以被综

合，压缩信息，做到“按需综合”。结合铁路致灾指

数的空间分布，可以将全国的铁路分为：有风险段

→保留细节，无风险段→自动综合。另外，为了保

持综合结果在空间拓扑上的正确性，采用湖泊作

为特殊约束层进行空间拓扑约束，即综合后的铁

路与周边的湖泊仍要保持拓扑关系的相对一致

性。比如，当铁路网中某些连接点被删除时，可能

会导致出现综合后的铁路穿越湖泊的现象，因此，

以湖泊作为拓扑约束图层，让湖区一定范围内的

铁路不参与综合，自动分离，从而保持铁路与湖泊

相对位置的正确性。

２．３　求算多尺度铁路网密度

灾害风险是针对承灾体而言的，只有当承灾

体暴露于一定强度的致灾因子下时，灾害才会发

生，同时，承灾体自身的脆弱性也决定了风险的大

小。本文通过构建不同搜索半径（犚）来求取每一

个网格的密度。采用 Ｋｅｒｎｅｌ计算结果分布较平

滑，本文运用Ｋｅｒｎｅｌ方法分别计算了搜索半径犚

＝１００、２００、３００、４００ｋｍ时的全国区域铁路网密

度，结果如图２～５所示。通过不同尺度的密度制

图，可以看出我国铁路网密度区域差异较大；高密

度区主要集中在经济较发达的东中部地区，以北

１０５１
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京为中心，成放射状分布；同时，我国铁路网在空

间上存在点轴分布的趋势，即主要中心城市和主

要干线相互连接，共同构成了我国的基本铁路网

骨架。

图２　中国铁路密

度分布（犚＝１００ｋｍ）

Ｆｉｇ．２　ＤｅｎｓｉｔｙｏｆＲａｉｌｗａｙ

ｉｎＣｈｉｎａ（犚＝１００ｋｍ）

　

图３　中国铁路密

度分布（犚＝２００ｋｍ）

Ｆｉｇ．３　ＤｅｎｓｉｔｙｏｆＲａｉｌｗａｙ

ｉｎＣｈｉｎａ（犚＝２００ｋｍ）

　

图４　中国铁路密

度分布（犚＝３００ｋｍ）

Ｆｉｇ．４　ＤｅｎｓｉｔｙｏｆＲａｉｌｗａｙ

ｉｎＣｈｉｎａ（犚＝３００ｋｍ）

　

图５　中国铁路密

度分布（犚＝４００ｋｍ）

Ｆｉｇ．５　ＤｅｎｓｉｔｙｏｆＲａｉｌｗａｙ

ｉｎＣｈｉｎａ（犚＝４００ｋｍ）

３　结果分析

通过ＬＣＤＰ自动综合模型对铁路承灾体进

行了分区、分段的综合，从综合结果（图６～９）可

以看出，我国铁路承灾体的灾害风险与我国自

然灾害时空格局有着密切的联系，区域差异明

显。结合铁路网密度（犚＝２００、３００ｋｍ）与综合

致灾指数的风险矩阵可以看出，我国铁路沿线

自然灾害主要存在４个相对高风险区，即华北

地区、西南地区、西北青藏地区和长江中下游地

区；从铁路网的整体性角度考虑，华北地区的风

险较高，其次是西南和长江中下游地区，西北地

区风险相对较低。

图６　铁路承灾体自

动综合结果１

Ｆｉｇ．６　ＲｅｓｕｌｔｓｏｆＧｅｎｅ

ｒａｌｉｚａｔｉｏｎｏｆＲａｉｌｗａｙ１

　

图７　铁路承灾体自

动综合结果２

Ｆｉｇ．７　ＲｅｓｕｌｔｓｏｆＧｅｎｅ

ｒａｌｉｚａｔｉｏｎｏｆＲａｉｌｗａｙ２

　

图８　铁路承灾体综合

风险等级（犚＝３００ｋｍ）

Ｆｉｇ．８　ＩｎｔｅｇｒａｔｅｄＲｉｓｋＬｅ

ｖｅｌｏｆＲａｉｌｗａｙ（犚＝３００ｋｍ）

　

图９　铁路承灾体综合

风险等级（犚＝２００ｋｍ）

Ｆｉｇ．９　ＩｎｔｅｇｒａｔｅｄＲｉｓｋＬｅｖｅｌ

ｏｆＲａｉｌｗａｙ（犚＝２００ｋｍ）

　　４大相对高风险区的主要特点为：① 华北地

区是我国铁路网络最密集的区域，分布有京广、京

九、京沈、京沪等南北大动脉，同时，该地区又是我

国人口密度最高，经济、文化发达的区域。加之又

处在地震、地面沉降、洪水等灾害易发多发地带，

因而是我国铁路灾害高风险区。② 西南地区地

貌类型以山地为主，主要自然灾害为滑坡、泥石

流，另外还有地震和暴雨。据统计，半数以上的铁

路灾害由山体坍塌引起，其次是泥石流、路基和路

堑坍塌。绝大多数灾害是由于下雨诱发铁路两旁

的地质灾害而产生的。③ 西北青藏地区经济基

础薄弱，是中国铁路唯一未成网的地区，主要干线

有兰新、陇海、京包、包兰等。该区域铁路主要受

地震、风沙等灾害的影响，另外，青藏线还受冻胀

等灾害的侵袭。④ 长江中下游地区以台风洪涝

和暴雨为主导，总的来看此区域有灾月份较其他

区域多，但灾害受灾程度相对较轻。

４　结　语

本文从地学基础理论、模型方法支撑到区域

实证应用，对线状自然灾害风险地图自动综合进

行了系统研究，结果表明ＬＣＤＰ模型在线状自然

灾害现象自动综合方面具有可行性。其综合结果

的有效性证明了该模型对铁路灾害现象的规律表

达反映了空间区域分异，对铁路承灾体高风险区

的表达符合其在孕灾环境、致灾因子、灾情等方面

的综合体现，该方法可以为多尺度区域灾害风险

管理与决策提供理论与方法支持。ＬＣＤＰ模型

除具有动态图层的交互功能外，还具有以下优点：

拓扑关系的一致性表达，依据风险等级的高低优

先表达高风险区；信息再处理能力，做到“按需综

合”，即分段对需要综合的线进行综合，节省数据

存储空间，提高数据处理效率。同时，铁路线的网

络结构在交通运输及区际联系中具有联动性、整

２０５１
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体性的特征，为不同区域尺度下的“区”与“段”联

合防灾、减灾提供了一种新的模式。
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